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Super-resolution land-cover mapping is a promising technology for prediction

of the spatial distribution of each land-cover class at the sub-pixel scale. This

distribution is often determined based on the principle of spatial dependence and

from land-cover fraction images derived with soft classification technology.

However, the resulting super-resolution land-cover maps often have uncertainty

as no information about sub-pixel land-cover patterns within the low-resolution

pixels is used in the model. Accuracy can be improved by incorporating supple-

mental datasets to provide more land-cover information at the sub-pixel scale; but

the effectiveness of this is limited by the availability and quality of these additional

datasets. In this paper, a novel super-resolution land-cover mapping technology is

proposed, which uses multiple sub-pixel shifted remotely sensed images taken by

observation satellites. These satellites take images over the same area once every

several days, but the images are not identical because of slight orbit translations.

Low-resolution pixels in these remotely sensed images therefore contain different

land-cover fractions that can provide useful information for super-resolution land-

cover mapping. We have constructed a Hopfield Neural Network (HNN) model to

solve it. Maximum spatial dependence is the goal of the proposed model, and the

fraction maps of all images are constraints added to the energy function of

HNN. The model was applied to synthetic artificial images as well as to a real

degraded QuickBird image. The output maps derived from different numbers of

images at different zoom factors were compared visually and quantitatively to the

super-resolution map generated from a single image. The resulting land-cover

maps with multiple remotely sensed images were more accurate than was the single

image map. The use of multiple remotely sensed images is therefore a promising

method for decreasing the uncertainty of super-resolution land-cover mapping.

Moreover, remotely sensed images with similar spatial resolution from different

satellite platforms can be used together, allowing a fusion of information obtained

from remotely sensed imagery.

1. Introduction

Information regarding the extent of land cover is important in many scientific

research fields such as ecology, agriculture and hydrology. Many types of land-

cover information for these applications are now provided by remote sensing technol-

ogy, due to its outstanding performance (Bonnett and Campbell 2002). At present, a

number of satellite sensors are routinely used to provide remotely sensed imagery with
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different spatial resolution for scientific research studies (Loveland et al. 2000, Song

et al. 2001, Friedl et al. 2002, Sawaya et al. 2003). These include Advanced Very High

Resolution Radiometer (AVHRR) with a spatial resolution of about 1000 m,

Moderate Resolution Imaging Spectroradiometer (MODIS) with spatial resolutions

of 250 m, 500 m or 1000 m, Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) with spatial resolutions of 90 m, 30 m or 15 m, Landsat

Thematic Mapper (TM) with a spatial resolution of 30 m, and QuickBird with

2.4 m multispectral and 0.6 m panchromatic imagery. Images from these sources

can provide land-cover information at spatial resolutions that are suitable for

research ranging from the global scale to the local scale.

Extraction of land-cover information from remotely sensed imagery is often

accomplished with classification technologies. However, imagery classification is

always a difficult task and the characteristics of the resulting land-cover maps derived
from different images are not always the same (Bonnett and Campbell 2002).

Moreover, when the sensor’s instantaneous field-of-view (IFOV) includes more

than one land-cover class on the ground, there are mixed pixels in the remotely sensed

imagery. Because their spectral characteristics are not representative of any single

land-cover class, mixed pixels present one of the most difficult problems in the

derivation of land-cover information from remotely sensed images (Fisher 1997,

Cracknell 1998). With hard classification methods, each pixel in an image is consid-

ered to be a unit belonging to a single land-cover class. Mixed pixels are assigned to
the class with the highest proportion of coverage, with the result that the land-cover

map produced is inaccurate. Although the use of remotely sensed imagery with high

spatial resolution can provide a better understanding of land-cover information by

decreasing the phenomenon of mixed pixels, usage of this type of technology is limited

by a number of factors, such as its temporal resolution, its spectral resolution and the

high costs associated with it.

One alternative method for addressing the problem of mixed pixels in remotely

sensed imagery is soft classification technology (Foody 1996, Liu and Wu 2005). In
contrast to hard classification technologies, soft classification approaches do not

assign mixed pixels as a single land-cover class but instead predict the proportional

cover of each land-cover class within each mixed pixel. Soft classification approaches

that have been proposed include linear spectral mixture modelling (Holben and

Shimabukuro 1993, GarciaHaro et al. 1996), fuzzy c-means classifiers (Atkinson

et al. 1997, Bastin 1997), artificial neural networks (Carpenter et al. 1999, Foody

2002, Liu et al. 2004, Lee and Lathrop 2006), regression trees (Liu and Wu 2005),

expert system rules (Hung and Ridd 2002) and support vector machines (Brown et al.
2000). However, although soft classification can provide more useful land-cover

information than hard classification, it can only achieve the area proportion of each

class. The actual spatial distribution of each class in these mixed pixels is not distin-

guished by these methods (Atkinson 1997, Foody 1998, Tatem et al. 2001a,b).

To predict the spatial land-cover distribution within mixed pixels, super-resolution

mapping, as also known as sub-pixel sharpening or sub-pixel mapping, is proving to be

a promising method. First introduced by Atkinson (1997), this type of land-cover

mapping can be considered as the post processing of soft classification. Thus, super-
resolution mapping techniques take the fraction values yielded by soft classification and

use these as input to retrieve an appropriate spatial location for specific land-cover

fractions. Current super-resolution mapping methods include the Hopfield neural net-

work (HNN) (Tatem et al. 2001a,b, 2002, 2003), linear optimization (Verhoeye and
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De Wulf 2002), genetic algorithm (Mertens et al. 2003), feed-forward neural network

(Mertens et al. 2004), Markov random field (Kasetkasem et al. 2005), pixel swapping

(Atkinson 2005, Thornton et al. 2007) and simulated annealing (Makido et al. 2007).

In general, super-resolution mapping can be formulated as an inverse problem that

reconstructs a fine spatial resolution map of land-cover class labels from a set of class
fractions provided by a low-resolution image. However, the inverse problem is under-

determined and different fine resolution land-cover class maps can each lead to

equally possible, but different, reproductions of the available low-resolution fractions

(Nguyen et al. 2006). Therefore, there is always uncertainty caused by super-

resolution mapping due to the lack of information about sub-pixel land-cover pattern.

Additional site-specific land-cover information at the sub-pixel scale would be useful

in decreasing the uncertainty.

This type of additional information for super-resolution mapping issues is available
in a number of different datasets, such as the panchromatic band images (Foody 1998,

Nguyen et al. 2006), vector boundaries (Aplin and Atkinson 2001), light detection and

ranging (Lidar) data (Nguyen et al. 2005) and digital elevation model (DEM) (Ling

et al. 2008). In addition, prior spatial land-cover structure information, such as special

patterns of linear land-cover features (Thornton et al. 2007), class labels at a set of fine

pixels (Boucher and Kyriakidis 2007) or the structural information encapsulated in a set

of indicator variogram models (Tatem et al. 2002, Atkinson et al. 2008, Robin et al.

2008), also can be successfully applied to improve the accuracy of super-resolution
mapping. However, these methods still have their own limitations, largely arising from

the accessibility of ancillary datasets. In most cases, accurate ancillary datasets are

unavailable, which immediately hampers the usability of these methods. Second, incor-

poration of ancillary datasets will bring about additional uncertainty, and the resulting

map accuracy will also be affected by the dataset quality. Lastly, these methods are

often designed for special situations. For instance, the method of using high-resolution

DEM to improve waterline mapping is based on the feature of water flow, and is

therefore unsuitable for land-cover classes other than waterlines (Ling et al. 2008).
In light of these limitations and issues, this paper proposes the examination of an

undervalued source of additional data for super-resolution mapping. It is well known

that satellite remote sensing has a multiobservation capability; that is, the observation

satellite takes images over the same area of land surface once every several days as it

orbits around the Earth. These observed images are always not identical to each other,

even under the same weather conditions, because of the slight orbit-translation caused

by orbit swing (Lu and Inamura 2003). Consequently, the pixels in remotely sensed

images acquired at different times are shifted at the sub-pixel scale, such that each pixel
contains different land-cover classes. Fraction maps derived from these images can

therefore provide additional land-cover information at the sub-pixel scale, which can

theoretically be used to improve the accuracy of super-resolution mapping. The main

objective of this paper is to investigate the potential of these multiple sub-pixel shifted

images as a means of improving the accuracy of super-resolution land-cover mapping.

2. Methodology

2.1 Super-resolution mapping with a single image and its uncertainty

The aim of super-resolution mapping is to predict the most suitable locations for the

different class fractions within each low-resolution pixel (Atkinson 1997). In general,

each low-resolution pixel was first divided into a pre-defined number of sub-pixels.

Super-resolution land-cover mapping 5025
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The number of sub-pixels of every class within each low-resolution pixel was then

assigned according to the fraction values. Finally, the spatial distribution of these sub-

pixels was determined based on the principle of spatial dependence (Mertens et al.

2003). The most important hypothesis of super-resolution mapping is the spatial

correlation of natural phenomena; i.e. the tendency that, for a given property,
spatially proximate observations are more alike than more distant observations.

Although this principle has been proven to be acceptable (Atkinson 1997), super-

resolution mapping with a single image (SMSI) always has uncertainty, as fraction

maps derived from only one image cannot provide sufficient information about the

land-cover distribution at the sub-pixel scale.

A simple representation of SMSI is given in figure 1 (adapted from Nguyen et al.

2006). The sample is a raster grid of 3�3 low spatial resolution pixels with two land-

cover classes, shown as white and black. Numbers in these pixels are the associated
proportions of the first land-cover class (figure 1(a)). Three possible spatial config-

urations of land-cover at the sub-pixel scale are represented in figures 1(b)–(d). All of

these land-cover pattern maps satisfy the fraction map shown in figure 1(a), but the

spatial distribution of sub-pixels in the central pixel is much different. Focusing first

on figures 1(b) and (c), the spatial sub-pixel distribution shown in figure 1(c) has a

higher spatial dependence than that seen in figure 1(b). Based on the assumption of

maximum spatial dependence, the land-cover spatial pattern shown in figure 1(c) is

believed to be more accurate than that shown in figure 1(b); thus, the result of super-
resolution mapping is figure 1(c). However, when we compare figures 1(c) and (d), both

land-cover patterns are seen to have the same spatial dependence and it is not possible

to determine which is the final solution of super-resolution mapping. Thus, the spatial

land-cover distribution at the sub-pixel scale cannot be precisely predicted using only

fraction maps derived from one image and the spatial dependence principle.

2.2 Super-resolution reconstruction with multiple images

The concept of ‘super-resolution’ has been widely used in digital image processing

since Tsai and Huang (1984) first introduced a frequency analysis model for super-

resolution reconstruction of a globally translated image sequence. In contrast to the

concept of ‘super-resolution mapping’, this ‘super-resolution reconstruction’ concept

refers to the construction of a single high-resolution image from multiple aligned
low-resolution images that have sub-pixel shifts. ‘Super-resolution mapping’, on the

Figure 1. Spatial dependence principle of super-resolution land-cover mapping and its uncer-
tainty. (a) Land cover proportion raster grid of 3�3 low-resolution pixels. (b) Possible super-
resolution mapping result without maximal spatial dependence. (c) and (d) Two possible
super-resolution mapping results based on maximizing spatial dependence. Adapted from
Nguyen et al. (2006), with permission.
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other hand, means the construction of final land-cover maps from the soft classifica-

tion result of a single image.

The basic idea behind super-resolution reconstruction is the combination of several

low-resolution images from the same scene to produce one or several images with a

higher resolution. In general, the low spatial resolution images represent different
‘looks’ at the same scene. In most situations, these images are not absolutely over-

lapped and there are different sub-pixel shifts between them. Because of this, none of

these low-resolution images is exactly the same as the others because each image

contains a certain amount of different information from the same scene. Therefore,

the different information contained in each low spatial resolution image can be

exploited to recover a high spatial resolution image (Park et al. 2003, Choi et al. 2004).

Due to its importance and usefulness, super-resolution reconstruction technology

has become one of the most active fields for image processing researchers and has
achieved successful applications in many fields. Many super-resolution reconstruc-

tion algorithms have been proposed, including Iterative Backward Projection (IBP)

(Irani and Peleg 1991), frequency domain processing (Kim and Su 1993), Projection

Onto Convex Sets (POCS) (Stark and Oskoui 1989), the maximum a posteriori (MAP)

approach (Hardie et al. 1997) and adaptive filtering (Elad and Feuer 1999). Several

well-cited documents can be accessed for a more complete review of super-resolution

construction of images (Sean and Robert 1998, Park et al. 2003).

Super-resolution reconstruction technology has also been applied to remotely
sensed imagery. Maltamo et al.(2003) combined several high-resolution video images

in order to improve the ability to distinguish single trees. Lu and Inamura (2003)

compared several existing super-resolution reconstruction algorithms and presented a

practical implementation based on the IBP algorithm. Their experimental results

showed that this algorithm can achieve a highly improved resolution image from its

low-resolution image sequences. Packalen et al. (2006) analysed the ability to recog-

nize forested and non-forested areas from multiple AVHRR images and showed that

it was difficult to identify a significant quantitative improvement, although the super-
resolution technique seemed to be successful visually.

This previous research showed that super-resolution reconstruction technology can

provide better visual results than those based on the original image. However, there

are also some disadvantages of using a time-series of satellite images in super-

resolution image production. First, the multiple remotely sensed images captured

on different days are often obtained under different weather conditions. Since it is

difficult to eliminate the effect of atmosphere on these satellite images, these images

are hard to be fused. Second, super-resolution reconstruction technology often leads
to spectral distortion. As the final object of using remotely sensed imagery is often the

extraction of land-cover information or object recognition, spectral distortion will

increase uncertainty of the result and generate more artefacts. Lastly, super-

resolution reconstruction technology is only suitable for images obtained from the

same satellite sensors. As the imaging model and the spectral band are very different,

remotely sensed images from different platforms, such as TM and ASTER, AVHRR

and MODIS, cannot be fused to provide super-resolution land-cover information.

2.3 Super-resolution mapping with multiple sub-pixel shifted images

Super-resolution methods fuse multiple low-resolution images to first construct a

single high-resolution image, and then use the resulting high-resolution image to

Super-resolution land-cover mapping 5027
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extract land-cover information with classification technologies. In the current study,

we propose an approach of super-resolution mapping with multiple sub-pixel shifted

images (SMMI). In this method, all low-resolution remotely sensed images are first

classified with a soft classification method to acquire fraction images. All of the

derived fraction images are then considered as inputs of super-resolution mapping
for extraction of the high-resolution land-cover map. The fundamental principle of

‘super-resolution reconstruction’ is still used in the proposed SMMI technology; that

is, if the low-resolution images have different sub-pixel shifts from each other,

different land-cover information at the sub-pixel scale contained in each low-

resolution image is exploited to obtain a high-resolution land-cover map.

Three simple examples shown in figure 2 are used to illustrate the proposed SMMI

technology. The illustration is an extension of the example discussed in section 2.1

(figure 1). If we have the image shown in figure 1(a) and also another sub-pixel shifted
image, both images can be used for SMMI.

In the first example, the additional image shown in figure 2(a) is a land-cover

proportion raster image of 3�3 low-resolution pixels. For simplicity, the coarse

resolution pixel was split into 2�2 sub-pixels. If the shift between both images is

known (it is set to be 0.5 pixel in this example), figure 1(a) (with a letter ‘F’ in the left

bottom corner) and figure 2(a) can be overlapped exactly and the result is shown in

figure 2(b). The resulting map of SMMI is shown in figure 2(c), whose sub-pixel raster

corresponds with figure 1(a). As mentioned above, when only a single image is
available, super-resolution mapping result often has uncertainty. With two over-

lapped images, the uncertainty can be eliminated and the result shown in figure 2(c)

becomes the only solution, because no other sub-pixel distributions can simulta-

neously satisfy these two fraction images.

The second example is shown in figures 2(d), 2(e) and 2(f). In this case, the

additional image is different from the first one. Figure 2(f) shows the result of

SMMI with two overlapped images shown as figure 2(e). In this situation, the spatial

land-cover patterns that have maximum spatial dependence, such as figures 1(c) and
1(d), cannot be considered as possible solutions any longer as their land-cover

proportions no longer simultaneously satisfy both fraction maps. The resulting map

shown in figure 2(f) is the solution, even though it lacks maximum spatial dependence.

The third example shown in figures 2(g), 2(h) and 2(i) is used to illustrate the SMMI

technology when multiple images have different spatial resolutions. In this example, a

2�2 pixel image with a coarser spatial resolution (1.5 times as the first image) was

used. Each pixel in figure 2(g) is split into a 3�3 sub-pixel raster to make the spatial

resolution of sub-pixels the same as that in figure 1(a). With the overlapped images
shown in figure 2(h), the resulting map shown in figure 2(i) can also be exactly

extracted, as no other land-cover pattern can satisfy both fraction maps.

Compared with one single remotely sensed image, multiple remotely sensed images

with sub-pixel shifts contain more useful land-cover information, as seen in the

example shown above. Incorporating this information into the super-resolution

mapping procedure can therefore improve the accuracy of the resulting high-

resolution land-cover map.

Compared with the ‘super-resolution reconstruction first and then classification’
technology, the proposed method has several specific advantages. First, the input of

the proposed method is not the reflected value of the images but rather is the soft

classification fraction maps extracted individually from each image. For the former

super-resolution reconstruction method, different atmospheric conditions will greatly
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affect the results. Thus, atmosphere correction, a complex and difficult task, must first

be performed. In the proposed method, however, the pixels are initially unmixed.

Images are dealt with individually and the different atmospheric conditions should

not affect analysis. For most situations, the atmospheric correction procedures can be

ignored as the atmosphere conditions are often similar in a regional area in each

individual image. Second, the former super-resolution reconstruction technology can

only be used for images acquired by the same sensor. With the proposed method,

remotely sensed images from different platforms can readily be fused to reconstruct
the resulting high-resolution land-cover map, because input is not the images them-

selves. Moreover, even if these images do not have the same spatial resolution, they

still can be fused. Thus, different images such as AVHRR and MODIS can be used

Figure 2. SMMI with different additional images. (a), (d) and (g) Three different land cover
proportion raster grids. (b), (e) and (h) Overlapping results of (a), (d) and (g) with the image
shown in figure 1(a) (with ‘F’ in the left bottom corner). (c), (f) and (i) Resulting maps at the sub-
pixel scale, derived with the multiple images shown in (b), (e) and (h).

Super-resolution land-cover mapping 5029
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together to provide land-cover information at the sub-pixel scale, which is a substan-

tial improvement for remotely sensed imagery fusion.

2.4 Hopfield neural network model for SMMI

The Hopfield Neural Network (HNN), which has been widely used for SMSI, is used

to address the problem of SMMI. The HNN model presented in this research is based

on the structure of the HNN proposed by Tatem et al. (2001b). As the model has been
described in detail in the previous literature, it is only simply presented here. More in-

depth information about the model can be accessed in a number of recent papers

(Tatem et al. 2001a,b, 2002, 2003, Nguyen et al. 2005, Nguyen et al. 2006).

The structure of the HNN model for SMMI is illustrated in figure 3. In this

example, four low-resolution images were used. Each image contains 2�2 pixels

with sub-pixel shifts shown in figure 3(a). For super-resolution mapping, each low-

resolution pixel is divided into a 5� 5 interconnected matrices of neurons shown as

figure 3(b), where the sub-pixel raster corresponds with the No.1 image. Each matrix
of neurons represents a land-cover class and each neuron (k,i,j) represents a sub-pixel

at position (i,j) in the land-cover class k. For SMMI, the sub-pixels not only belong

to a single low-resolution image but to all low-resolution images at the same time.

All fraction images derived from all images are land-cover proportion constraints of

HNN. For example, the black sub-pixel in the 5th row and the 6th column (abbre-

viated as (r5, c6)) shown in figure 3(b) simultaneously corresponds with the (r1, c2)

low-resolution pixel of the No.1 image, the (r2, c1) pixel of the No.2 image, the (r1, c2)

pixel of the No.3 image, and the (r1, c1) pixel of the No.4 image.
The HNN is a recurrent neural network and runs until it converges to a stable state.

At the stable state, the value of the energy function of the HNN is at a minimum while

the spatial correlation of the sub-pixels is maximized. The output values of the

neurons are binary values at the stable state. If the output value of the neuron is 1,

the sub-pixel is assigned to that land-cover class. Otherwise, if the output value is 0,

the sub-pixel does not belong to that class (Tatem et al. 2001a).

Figure 3. (a) Four images of 2�2 pixels with sub-pixel shifts; x and y represent the image pixel
coordinates. (b) Representation of the Hopfield network layer; i and j represent the neuron
coordinates.
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The network is simulated via its equation of motion, using the Euler method:

mijðtþ dtÞ ¼ mij þ
dmijðtÞ

dt
dt; (1)

dui

dt
¼ � �E

�vi

; (2)

where dt is the time step of the iterative method, and the function (duij(t)/dt) is

measured using (dEij / dv) determined using the goals and constraints of the task.

For SMMI, the network energy function is defined as:

E ¼ �
X

k

X
i

X
j

ðW1Ckij þW2Pkij þW3MkijÞ; (3)

where (k,i,j) represents a neuron at position (i,j) in the land-cover class k, Ckij refers to

the spatial clustering function, Pkij is the land-cover proportion constraint and Mkij is

the multiclass constraint value. W1, W2 and W3 are values of the weighting constants,

which define the effects of the corresponding goal function, proportion constraint and

multiclass constraint to the energy function, respectively.

The value of the spatial clustering is the goal function of HNN. The object of this

function is to make the output of a neuron similar to that of its neighbouring neurons,

which is a method of achieving spatial dependence. It includes two values of C1kij and
C2kij that are determined by the following equations:

dC1kij

dvkij

¼ 1

2
1þ tanh

1

8

Xi þ 1

b ¼ i � 1

b�i

Xj þ 1

c ¼ j � 1

c�j

vkbc � 0:5

0
BB@

1
CCAl

0
BB@

1
CCA� ðvkij � 1Þ; (4)

dC2kij

dvkij

¼ 1

2
1þ � tanh

1

8

Xi þ 1

b ¼ i � 1

k�i

Xj þ 1

c ¼ j � 1

k�j

vkbc

0
BB@

1
CCAl

0
BB@

1
CCA

0
BB@

1
CCA� ðvkijÞ; (5)

where l is the gain or the steepness of the tanh function, 0.5 is the threshold and vkij is

the output value of the neuron (k,i,j). The first function (4) aims to increase the output

value vkij of the centre neuron to 1 if the average output of the surrounding eight

neurons is greater than 0.5. The second function (5) aims to decrease the output for

each layer of the centre neuron vkij to 0 if the average output of the surrounding eight
neurons is less than 0.5.

Land-cover proportion constraint Pkij aims to retain the pixel class proportion

output from the soft classification. For SMMI, as every sub-pixel (i.e. each neuron in

the HNN), belongs to N images, the whole constraint Pkij will be the sum of all

proportion constraints for each image:

Pkij ¼
XN

n¼1

LnPn
kij ; (6)
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where Ln is the weighting constant of the proportion constraint for each image. Pn
kij is

the proportion constraint of the nth image and is defined as:

dPn
kij

dvkij

¼ 1

2z2

Xxzþz�1

b¼xz

Xyzþz�1

c¼xz

ð1þ tanhðvkbc � 0:5ÞlÞ � an
kxy; (7)

where 1
�

2z2
Pxzþz�1

b¼xz

Pyzþz�1

c¼xz

ð1þ tanhðvkbc � 0:5ÞlÞ is the estimated proportion and an
kxy

is the input proportion of the land cover k of the pixel (x,y), which is the correspond-
ing original spatial resolution pixel of the sub-pixel or neuron (k,i,j) in the nth image. z

is the zoom factor, which determines the increase in spatial resolution from the

original image to the super-resolution mapping image. If the area proportion estimate

for class k is lower than the input proportion, a negative gradient is produced to

increase the output values of neurons within the pixel (x,y) in the class layer k.

Conversely, if the estimated proportion is greater than the input proportion, the

proportion constraint produces a positive value to increase the output values of the

neurons in the class k.

The multiclass constraint value Mkij aims to make the sum of classes at the position

(i,j) to be equal to 1, which ensures that the outputs from each class layer have no gaps

or overlaps between land-cover classes in the result. The value of the multiclass

constraint is calculated as:

dMkij

dvkij

¼
Xc

k¼0

vkij

 !
� 1: (8)

For super-resolution mapping, the HNN model must be initialized. Two initializa-

tion strategies can be used for the model, a random initialization and an initialization

with land-cover proportion values. There are no significant differences in the results

from either of the two initialization techniques (Tatem et al. 2001a). As the corre-

sponding soft classification inputs are difficult to be satisfied simultaneously, all
neurons are random initializations of neuron outputs within the range [0.45, 0.55] in

this study.

3. Results and discussion

A set of synthetic images derived from three artificial shapes and a real QuickBird

image were used to illustrate and validate the performance of the proposed SMMI

technology. To avoid introducing extra error by the uncertainty of the soft classi-

fication result, these original high-resolution images were first classified to yield

a high-resolution class map, and then simulated data were obtained by degrading

this classification result. The area proportions of all classes in each low-resolution

pixel were calculated in a window size according to the zoom factor. The corre-
sponding fraction images were considered as the soft classification result and were

then used as the inputs for the subsequent super-resolution land-cover mapping

algorithm.

An additional issue concerning SMMI is the image co-registration, which is also a

currently active topic in field of super-resolution reconstruction with multiple images

(Park et al. 2003, Choi et al. 2004). The sub-pixel registration method is beyond the

scope of this paper and many algorithms dealing with this issue can be used for this
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purpose. In this study, as the low-resolution images are all derived by degrading the

fine spatial resolution maps, the sub-pixel shifts between these images are assumed to

be known.

3.1 Simulated artificial imagery

In this experiment, three simulated artificial images were used to validate the pro-

posed SMMI algorithm by comparing it with the traditional SMSI method. The

simulated images included three types of shapes shown as figures 4(a), (f) and (k).

All images were 56 � 56 pixels and two classes representing the shape (white) and the

background (black) were considered. The zoom factor was set at 7. Thus, the simu-

lated low-resolution images contained 8 � 8 pixels and each low-resolution pixel

contained 7� 7 pixels of the original high-resolution image. This caused mixing of the
two classes at the shape boundaries, shown as figures 4(b), (g) and (l).

For SMMI, multiple low-resolution images with sub-pixel shifts must be used for

the inputs of the HNN model. To simulate these sub-pixel shifted images, the original

high-resolution image was shifted at the pixel scale in the x and y directions. The

shifted image was then degraded as described previously. This procedure was per-

formed many times according to the number of images used for SMMI. The fraction

maps were calculated directly from these sub-pixel shifted images. As the shift of the

original image was known, these degraded images could be accurately registered at the
sub-pixel scale.

Figure 4. Simulated artificial imagery and super-resolution mapping result with single and
multiple images. (a), (f) and (k) Three simulated artificial images (56�56 pixels). (b), (g) and (l)
Degraded images with zoom factor z¼7. (c), (d) and (e) Resulting map derived from (a) with
one, four and eight images. (h), (i) and (j) Resulting map derived from (f) with one, four and
eight images. (m), (n) and (o) Resulting map derived from (k) with one, four and eight images.
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The HNN model was initialized by randomly setting all neurons outputs within the

range [0.45, 0.55]. The constraint weighting constants W1, W2 and W3 were set at 1,

to ensure that no single function had a dominant effect on the energy function. C1kij

and C2kij always have the same effect on the spatial clustering function and they were

both set at 0.5. The weighting constants Ln of the land-cover proportion constraint for
each image were all set to be 1/N, where N is the number of images. The gain or the

steepness of the tanh function l was set at 100, the time step of the iterative method dt

was set at 0.01 and the iteration time was set at 5000.

As previous research has shown, the result of SMSI is more accurate than hard

classification technologies (Atkinson 1997, Tatem et al. 2002, Mertens et al. 2003,

Atkinson 2005, Foody et al. 2005). Consequently, the SMMI result was only com-

pared with the result of SMSI for assessment of its ability to derive land-cover

information at the sub-pixel scale.
Visual comparison of the results of both techniques showed that SMMI was more

effective than SMSI. For the first shape shown in figure 4(a), the resulting maps of

super-resolution mapping with one, four and eight images are shown in figures 4(c),

(d) and (e), respectively. The SMMI maps produced by four and eight images were

both more similar to the reference than was that of SMSI (super-resolution mapping

with 1 image). Although there were still some minor differences between the resulting

SMMI maps and the reference map, the improvement was noticeable. The right angle

corners of the shape were not preserved in figure 4(c), while they were presented more
precisely in figures 4(d) and (e). The crossover in the shape was another example that

illustrated the different performance of these technologies. In figure 4(c), the cross-

over in the shape was more likely to be presented as a circle, because the spatial

dependence of a circle is larger than a crossover. With an increase in the number of

images, more information about the spatial distribution of the shape was incorpo-

rated into the HNN model. This zone in the resulting map was no longer a circle but

became a crossover similar to that seen in the reference map. For the second and third

shapes, although the improvement was different, the resulting maps of SMMI were all
more similar to the reference map than was that of SMSI. This was especially true for

the third shape, as the original shape was not distinguished with SMSI, while SMMI

could well reconstruct the shape.

The error mapping pixels (EMP) were used as a statistical index to validate the

performance of SMMI quantitatively and the results are shown in table 1. The EMPs

of three shapes were much different, because the spatial pattern of the target shape has

a pronounced effect on the performance of SMSI and SMMI. However, compared

with SMSI, SMMI always had a considerably lower EMP index, which equates to an
increase in mapping accuracy. For the first shape, EMP was 40/38 for SMSI (the first

numeral is the number of the white shape pixels misclassified to a black background

Table 1. Results of error mapping pixels (EMP) for an artificial image with SMSI and
SMMI. The former is the number of shape pixels misclassified to the background pixels,

and the latter is the inverse.

EMP One image Four images Eight images

First shape 40/38 16/10 10/6
Second shape 19/18 5/10 2/4
Third shape 71/74 12/19 8/14
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pixel and the second was the inverse). For SMMI, the EMP decreased to 16/10 for

four images and 10/6 for eight images respectively, which was only about one-third

and one-quarter of that seen for SMSI. A similar tendency was noted for the second

and third shapes, although the decrease in EMP was not the same. The number of sub-

pixel shifted images used in SMMI also influenced the performance of SMMI. When
more images were used, the EMP was reduced and the super-resolution mapping had

higher accuracy.

3.2 Degraded real remotely sensed images

To further assess the capability of the proposed SMMI technology to address a real

natural phenomenon, a QuickBird image was used in this section to provide a more

realistic test. The test area was located in Wuhan city, HuBei province, China. The
experiment was implemented using a real panchromatic (PAN) QuickBird image of

70 � 70 pixels (at 0.6 m spatial resolution) shown in figure 5(a). According to a field

investigation, the area consisted of three land-cover classes: trees, grass and roadways.

The land-cover map shown in figure 5(b) was obtained by manually digitizing the

PAN image, in which the tree class was shown as black, the grass class was shown as

grey and the roadway class was shown as white.

As was done with the simulated artificial image, the real QuickBird image was

degraded to low-resolution images. Figures 5(c) and (d) show the degraded real
QuickBird PAN images with zoom factors z¼ 5 and z¼ 7, respectively. The degraded

low-resolution images shown here were used only for visual comparison. As it is

impossible to calculate the proportion of each class through soft classification tech-

nologies only from a single PAN image, the fraction maps were extracted directly

from the high-resolution land-cover image to ensure their correctness. The HNN

model operation parameters were set to be the same as the previous simulated

artificial images. For the SMMI technology, 4, 8 and 12 sub-pixel shifted images

were used to evaluate the effect of the number of images on the super-resolution
mapping result. The resulting SMSI and SMMI maps are shown in figures 5(e)–(l).

Compared with the reference high-resolution land-cover map shown in figure 5(b),

the resulting land-cover maps produced by the SMSI technology were not visually

accurate, especially for the road class and the tree class. In the reference map, the road

formed a circle. However, in the resulting SMSI map, the road class became several

spatially separated patches. For the tree class, small patches had almost disappeared

and were combined to larger patches in the SMSI map. With an increase in the zoom

factor, the patches became larger and smoother.
In comparison with SMSI, the resulting land-cover maps produced by SMMI were

more accurate. The zoom factor z ¼ 5 was used here to illustrate the performance of

SMMI. Focusing on the road class, a great improvement was noticed. No matter how

many images were used, the resulting road class never appeared as separated patches

as it had with SMSI, but became a continuous circle similar to the reference map,

although there were still some minor differences between these maps and the reference

map. For the tree class, as more images were used for SMMI, the result became more

precise, especially for the location and shape of patches. For SMMI with four images,
small patches at the north-east corner were still not represented at accurate locations

in the resulting map and several central small patches were combined to form a large

patch. However, with 12 images, the shapes and locations were represented more

accurately and became much more similar to those in the reference map.
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The accuracy statistics showed a considerable increase in accuracy with the proposed

SMMI technology (table 2). For the zoom factor z¼ 5, overall accuracy increased from

93.65% for SMSI to 97.79%, 98.21% and 98.85% for SMMI with 4, 8 and 12 images,

respectively. The Kappa coefficient increased from 86.13% for SMSI to 95.21%, 96.11
and 97.52% for SMMI with 4, 8 and 12 images. With four images, the accuracy had an

improvement of 4.14% in terms of overall accuracy and 9.08% for the Kappa coefficient.

Although more images were used for SMMI, the result was more accurate; there was only

about a 1% increase in overall accuracy and the Kappa coefficient by adding four images,

step by step. A similar trend was also noticed for the zoom factor z¼ 7. Compared with

SMSI, the overall accuracy of SMMI with four images increased about 10% and the

Kappa coefficient increased about 25%. Although the resulting map was more accurate

with the increase in image number, the result accuracy had no distinct improvement and
an increase of only about 1% could be achieved by adding four more images.

Figure 5. Degraded real QuickBird imagery and super-resolution mapping result with single
and multiple images. (a) QuickBird 0.6-m panchromatic image (70�70 pixels) with the central
point located at 30�35050.900N and 114�19055.800E; (b) land-cover class image (black represents
trees, grey is grass, and white is roadways); (c) degraded image with zoom factor z¼5;
(d) degraded image with zoom factor z¼7; (e), (f), (g) and (h) resulting super-resolution
mapping images derived from 1, 4, 8 and 12 images at zoom factor 5; (i), (j), (k) and (l) resulting
super-resolution mapping images derived from 1, 4, 8 and 12 images at zoom factor 7.
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4. Conclusions

Super-resolution mapping is a post processing technology of soft classification used to

predict spatial land-cover patterns at the sub-pixel scale. Although this can provide a

more informative representation than the result of soft classification, SMSI always

has uncertainty; the fraction maps derived from only one image cannot provide

enough information about the land-cover distribution at the sub-pixel scale.

However, as satellites always have multiobservation capability, multiple sub-pixel

shifted images can be used to provide more useful information for super-resolution

land-cover mapping.
This paper introduces the technology of super-resolution land-cover mapping

using multiple sub-pixel shifted remotely sensed images. The basic principle of the

proposed method is similar to that of the traditional ‘super-resolution construction’

method, however, both methods are essentially different. The ‘super-resolution

construction’ method first recovers the high-resolution image and then obtains the

resulting high-resolution land-cover map through a hard classification method

applied to the reconstructed image. In contrast, the proposed method first derives

the fraction maps of each low-resolution image with a soft classification method and
then combines these fraction maps to predict the resulting high-resolution land-

cover map.

Compared with the ‘super-resolution reconstruction’ method, the input of the

proposed method is not the images themselves but the fraction maps derived from

each image with soft classification technologies. Because of this, the different atmo-

spheric conditions should not affect analysis and the atmospheric correction proce-

dures can be ignored for most situations. Moreover, remotely sensed images with

similar spatial resolution from different satellite platforms can be used together as the
inputs of SMMI, and this feature extends information fusion of remotely sensed

imagery.

An HNN optimization model was constructed to address the problems of

SMMI. The effectiveness of the method was assessed using simulated artificial images

as well as a degraded real QuickBird image. When the resulting maps derived with

SMMI were compared visually and quantitatively with that derived with SMSI, for all

examples, SMMI was found to achieve more precise high-resolution land-cover maps

than SMSI. The results demonstrated the usefulness of the proposed SMMI technol-
ogy and the HNN model.

Although the proposed SMMI technology showed good performance, there are

still several issues that need to be further studied. As the simulated results in this

Table 2. Results of accuracy analysis for a real QuickBird image with SMSI and SMMI at
different zoom factors.

Statistics index Overall accuracy (%) Kappa coefficient (%)

Scale factor z ¼ 5 z ¼ 7 z ¼ 5 z ¼ 7

One image 93.65 85.28 86.13 67.92
Four images 97.79 95.81 95.21 91.91
Eight images 98.21 96.97 96.11 93.00
Twelve images 98.85 98.47 97.52 94.52
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research were obtained under ideal conditions without any extra errors, the uncer-

tainty caused by soft classification and registration of multiple images needs to be

investigated in more depth. An integrated model incorporating simultaneous soft

classification, image registration and land-cover mapping appears to be a promising

method for improvement of the SMMI technology for practical applications.
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