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Superresolution Land Cover Mapping
Using Spatial Regularization
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Abstract—Superresolution mapping (SRM) is a method of pre-
dicting the spatial locations of land cover classes within mixed
pixels in remotely sensed images. This paper proposes a novel
SRM framework that is operated from the perspective of spatial
regularization. Within the proposed framework, SRM aims to
generate final superresolution land cover maps that conform to in-
putted fraction images, with spatial regularization intended for ex-
ploiting a priori knowledge about the land cover maps. Two SRM
models are constructed by using maximal spatial dependence as
the spatial regularization term and the L1 or L2 norm as the data
fidelity term. The proposed models are evaluated by using syn-
thetic Landsat, real IKONOS, and real Airborne Visible/Infrared
Imaging Spectrometer images and compared with hard classifi-
cation technologies, as well as pixel-swapping, Hopfield neural
network, and Markov random field SRM models. We perform
linear spectral mixture analysis (LSMA) and multiple endmember
spectral mixture analysis (MESMA) to estimate fraction images.
Results show that the accuracy of inputted fraction images plays
an important role in the final superresolution land cover maps
and that using MESMA fraction images results in higher accuracy
than using LSMA fraction images. Moreover, the L-curve criterion
is suitable for choosing the optimal regularization parameter in
both SRM models. Compared with hard classification technologies
and other SRM models, the proposed model derives the highest
Kappa coefficients and lowest class area proportion errors when
MESMA fraction images are used as input.

Index Terms—Spatial regularization, spectral unmixing, super-
resolution mapping (SRM).

I. INTRODUCTION

P IXEL mixtures are critical problems encountered when
extracting land cover information from remotely sensed

images [1]–[3]. A mixed pixel generally cannot be appropri-
ately represented by standard hard classification technologies,
which regard one pixel a unit that belongs solely to a single land
cover class. By contrast, spectral unmixing or soft classification
technologies [4]–[6] do not assign a mixed pixel to a single land
cover class but instead generate fraction images that represent
proportional areas of different land cover classes within mixed
pixels. Spectral unmixing technologies provide more useful
land cover information than hard classification technologies.
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Nevertheless, the actual spatial distribution of each land cover
class in mixed pixels cannot be distinguished using spectral
unmixing technologies.

Superresolution mapping (SRM), also referred to as subpixel
mapping, is a promising method of predicting the spatial dis-
tribution of different land cover classes within mixed pixels
[7]–[9]. SRM can be considered the postprocessing stage of
spectral unmixing, in which the fraction images produced by
spectral unmixing are used as input to retrieve a superresolution
land cover map with fine spatial resolution. SRM generates
a more informative superresolution land cover map than hard
classification and spectral unmixing technologies and is a par-
tial solution to the limitations presented by the coarse spatial
resolution of remotely sensed images. SRM has been used
in many fields, including mapping rural land cover [10]–[12],
urban land cover [13], [14], waterlines [15]–[17], and land
cover changes [18], as well as refining ground control points
[19] and calculating landscape pattern indices [20].

The scientific community currently focuses on primary con-
cerns over the SRM models used to describe the spatial patterns
of land cover classes [9]. Once a specific model of spatial
patterns is determined, SRM is generally converted into an
optimization problem, in which the objective is now to iden-
tify a superresolution land cover map that corresponds to the
spatial pattern model. Various spatial pattern models have been
proposed and used for SRM. The maximal spatial dependence
model is extensively used in the H-resolution case, in which
image pixels are smaller than the objects of interest [8], [21]–
[24]. The variogram [25], [26] and multiple-point geostatistics
[27], [28] are used in the L-resolution case, wherein image pix-
els are larger than the objects of interest. Moreover, additional
site-specific data, such as panchromatic images [29], [30], light
detection and ranging data [31], digital elevation models [17],
high-resolution segmentation images [32] and multitemporal
images [33], [34], have been used to provide more information
about the spatial patterns of land cover classes and improve the
effectiveness of SRM models.

Aside from spatial pattern models, the approach to handling
inputted fraction images is another critical factor for SRM.
Even though models of land cover spatial patterns and area
fraction constraints or the spectral separability of land cover
classes both constrain SRM results [35], [36], the latter attract
relatively little attention.

The methods for resolving the area fraction constraints in
existing SRM models are generally classified into two cate-
gories. In the first category, the number of subpixels for each
land cover class in each mixed pixel is restricted so that it cor-
responds with inputted area fractions. Various specific methods
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have been proposed in different SRM models: 1) in the pixel-
swapping model [21]–[24], the number of subpixels is deter-
mined according to area fractions inputted in the initialization
step, and during the iteration, the subpixel location changes,
whereas the number of subpixels remains constant; 2) in the
interpolation-based model [37], subpixels are assigned accord-
ing to interpolated values only if the available subpixels for
a particular class have not been completely exhausted, and
this pixel assignment approach has also been applied in the
SRM models proposed in [38]–[41]; and 3) in the stochastic
simulation model, the running probability of each subpixel is
considered a function of the number of previously simulated
labels of the same class at subpixels within each mixed pixel
[25], [27], [28]. In general, maintaining the subpixel numbers
is valuable for model development because no extra fraction
errors need to be considered [9]. However, given that spectral
unmixing is still an open problem and that accurate fraction
images are always unavailable in practice [4]–[6], the fraction
errors resulting from spectral unmixing considerably affect the
performance of SRM with a fixed number of subpixels. Con-
sequently, numerous speckle artifacts may characterize a final
superresolution land cover map, thereby giving rise to the need
for additional postprocessing steps, such as spatial filtering,
to eliminate fraction errors [10].

In the second category, the fractions in a final superresolution
land cover map can differ from inputted fraction images. This
alternative approach relaxes the constraints caused by fraction
images and eliminates the fraction errors caused by spectral
unmixing. The widely used Hopfield neural network (HNN)-
based SRM model belongs to this category [7], [26], [29],
[30], [33]. The HNN model considers SRM an optimization
problem, in which the aim is to minimize an energy function
with a goal function and two constraints that are balanced by
weights. The goal function maximizes the spatial clustering
between subpixels and plays the same role as a spatial pattern
model. The proportion constraint maintains the proportions in
inputted images, and the multiple-class constraint ensures that
each class layer can be fitted together with no gaps or overlaps
in a final land cover map [12]. The proportion constraint can
be relaxed by adjusting the weights between the goal function
and constraints, thereby enabling the acquisition of accurate
results in the presence of fraction errors. Although the HNN
model is widely used, this model still has several limitations.
First, fraction images are represented by various interconnected
layers in a network. The spatial pattern is calculated only within
each layer for individual land cover classes. Thus, the rela-
tionships among different land cover classes are disregarded.
Second, all the layers in a network must be combined using
an additional multiclass constraint to ensure that the result is a
categorical field, making the model too complex. Finally, the
determination of the weights in the model is usually subjective
and without theoretical basis. Aside from the HNN model,
Robin et al. proposed another SRM model [32], in which both
high-resolution structural information and coarse-resolution
temporal information were used to generate a superresolution
land cover map. The model is based on the linear mixture
model for coarse-resolution pixel disaggregation and a high-
resolution segmentation image that is used to provide the land

cover proportions. Although the model can produce a fine
superresolution land cover map, the inputted high-resolution
segmentation image is often unavailable in practice, limiting
the usage of the model.

In effect, the second category of SRM models can be con-
sidered a regularization method. The coarse-resolution fraction
images are the only available data to which SRM is applied in
reconstructing a final superresolution land cover map. The ob-
jective of SRM therefore should be to recover a superresolution
land cover map from inputted fraction images. Given that many
land cover configurations satisfy area fractions, SRM becomes
an ill-posed inversion problem with an insufficient number of
observations and a nonunique and unstable solution. To over-
come the ill-posed nature of the SRM problem, SRM models
convert the ill-posed inversion problem into an optimization
problem by defining an object function [7], [8], [23], [42]–[46].
The regularization method is widely regarded as a promising
method with which to resolve the aforementioned problem;
it has therefore found extensive application in many fields,
such as image analysis and pattern recognition [47]–[51]. In its
broadest sense, regularization is a mathematical technique that
facilitates the use of a priori information in the form of a reg-
ularization relationship for the solution of ill-posed problems.
On the basis of regularization, the objective of SRM is to ensure
that retrieved fine-resolution maps conform to coarse-resolution
fraction images according to an observation model that con-
nects the maps and images. To convert an ill-posed problem into
a well-posed one, regularization exploits a priori knowledge
about a land cover map. Therefore, SRM performed from the
perspective of a regularization problem can be relevant when
a unified framework is required to reconstruct a final superre-
solution land cover map from inputted fraction images by SRM.

Several SRM models are directly applied to images by us-
ing spectral constraints instead of the proportion constraints
provided by fraction images. These models, which include the
Markov random field (MRF) [36], [52], [53], spectral–spatial
integration [54], and fuzzy c-means [55], are established upon
regularization. Despite the advantage of this approach, how-
ever, replacing proportion constraints with spectral constraints
poses serious limitations. The spectral constraint used in the
aforementioned models is the object function of certain spectral
unmixing algorithms, such as the Gaussian maximum likeli-
hood algorithm in the MRF model and the linear unmixing
algorithm used in the spectral–spatial integration model. Thus,
the spectral unmixing algorithm incorporated into the SRM
model has an important impact on the derived results. Nonethe-
less, only simple spectral unmixing algorithms have thus far
been used. Powerful spectral unmixing algorithms, such as the
nonlinear spectral unmixing algorithm and multiple endmem-
ber spectral unmixing algorithm, are difficult to apply, limiting
their use in SRM models. By contrast, the SRM model that
uses fraction images as input is independent of the spectral
unmixing algorithm. Any spectral unmixing algorithm can be
used as a preprocessing tool for estimating fraction images,
thereby generating corresponding SRM models that are flexible
in practice.

This paper proposes a novel SRM framework that is operated
under a regularization perspective. The proposed framework
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is easy to implement and eliminates the errors resulting from
inputted fraction images. The rest of this paper is organized
as follows. Section II presents the problem formulation and
proposed approach. Section III discusses the implementation of
the proposed approach, along with the experimental results on
synthetic and real images. Section IV concludes this paper.

II. METHODOLOGY

A. Modeling the SRM Problem

We assume that a remotely sensed image with coarse spa-
tial resolution has M1 ×M2 pixels and that the number of
land cover classes in the entire image is C. Let Y be the
fraction images yielded by spectral unmixing; it is denoted in
vector form as Y = [y11 , y

1
2 . . . y

1
M1×M2

, y21 , y
2
2 . . . y

2
M1×M2

. . .

yCM1×M2
], where ycV is the fraction value of the cth class

in coarse-resolution pixel V . By setting the zoom factor as
z and using Y as input, SRM aims to generate a labeled
land cover map X = [x1, x2 . . . x(z×M1)×(z×M2)], where (z ×
M1)× (z ×M2) is the size of the resultant fine-resolution
land cover map. All the subpixels in X are considered pure
pixels and should be assigned to a certain land cover class as
xv ∈ (1, . . . C) for subpixel v. Each coarse-spatial-resolution
pixel V corresponds to a specific z × z patch in X . Therefore,
ycV is the percentage of the subpixels assigned to land cover
class c in this patch. This percentage can be calculated as

ycV =
∑
v∈V

ϕ(xv=c)/z
2 (1)

where ϕ(xv=c) = 1 if subpixel xv is the cth land cover class;
otherwise, ϕ(xv=c) = 0. On the basis of all the land cover
classes in the entire image, the general observation model for
SRM can be represented as follows:

Y = HX +N (2)

where [C ×M1 ×M2, (z ×M1)× (z ×M2)] matrix H is the
subsampling matrix that represents the degradation process
between X (of size [(z ×M1)× (z ×M2), 1]) and Y (of size
[C ×M1 ×M2, 1]), similar to the form of (1). [C ×M1 ×
M2, 1] matrix N represents the fraction errors caused by spec-
tral unmixing.

As indicated in the observation model defined in (2), a popu-
lar method of estimating the corresponding fine-resolution land
cover map from observed coarse-resolution fraction images is
the maximum likelihood-type estimator. The definition of the
estimator in the SRM context can be expressed as the following
minimization problem:

X̂ = argmin
x

D(X,Y,H) (3)

where D(X,Y,H) is a data fidelity term that represents the
inconsistency between X and Y ; minimizing D(X,Y,H)
provides a conformance force of X to Y , according to the
observation model used.

Mathematically, the problem of recovering X from Y is
an ill-posed inverse problem because the basic observation

model corresponds to an underdetermined linear system with
infinite possible solutions. Regularization can be included in
the cost function to stabilize the problem or constrain the
space of solutions. Traditionally, regularization takes the form
of constraints in the space of possible solutions, which is
often independent of measured data. On the basis of a priori
knowledge on the spatial patterns of land cover, therefore, SRM
uses regularization techniques to approximate superresolution
land cover map X . In this approximation, SRM considers the
following united framework:

X̂ = argmin
x

[D(X,Y,H) + λR(X)] (4)

where R(X) is a regularization term that explicitly takes
a priori information on superresolution land cover map X into
account, and λ is a global weight parameter that balances the
contribution of regularization and data fidelity terms.

To construct a specific SRM model within the regularization
framework, the data fidelity term D(X,Y,H), the regulariza-
tion term R(X), and a suitable regularization parameter λ for
balancing both terms should be chosen.

B. Data Fidelity Term

The data fidelity term represents the closeness of a final
solution to measured data. For SRM, the final solution is the
superresolution land cover map, and the measured data are
the fraction images extracted by spectral unmixing. Therefore,
a cost function should be defined to measure the difference
between the area percentage in the final superresolution land
cover map and the inputted fraction images. We investigate L2
and L1 norm estimators, which are commonly used for the data
fidelity term [56].

A common cost function is the least squares cost function,
which minimizes the L2 norm of the residual vector. Thus

D(X,Y,H) = ‖Y −HX‖22. (5)

In cases wherein N is the additive white zero-mean Gaussian
noise, the L2 norm approach provides the maximum likelihood
estimate of data.

Another widely used cost function is the L1 norm, which
is the maximum likelihood estimate of data in the presence of
Laplacian noise

D(X,Y,H) = ‖Y −HX‖1. (6)

The robustness of an employed estimator is key to SRM
results. In general, the choice of the data fidelity term should
correspond with the features of noise included in inputted frac-
tion images. In later experiments, we compare the performance
of the L2 and L1 norms as the data fidelity terms.

C. Regularization Term

To estimate the final result, particular knowledge regarding
the spatial patterns of land cover classes should be obtained
through regularization. For SRM, the spatial dependence prin-
ciple (i.e., the tendency for spatially proximate observations
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of a given property to be more similar to one another than
distant observations) is the most popular model used to describe
the spatial patterns of land cover. In this paper, the spatial
dependence principle is used as the prior model of land cover
maps. This principle is identical to the smoothness principle,
which is widely used for spatial regularization. Both principles
aim to create neighboring pixels that have the same labels.

Considering a neighboring window w × w for each subpixel
xv, the regularization term R(X) is calculated as

R(X) =

(z×M1)×(z×M2)∑
v=1

R(xv)

=

(z×M1)×(z×M2)∑
v=1

w×w∑
n=1

φn × δ(xv, xn) (7)

where δ(xv, xn) characterizes the relationship between the
subpixel xv and its neighboring subpixels xn. Neighboring land
cover classes more likely share the same properties than those
distantly located from one another; furthermore, the spatial
dependence principle should contribute to the minimal value
suitable for the framework in (4). Thus, δ(xv, xn) is defined as

δ(xv, xn) =
{
0 if xv = xn

1 otherwise
(8)

with φn as the spatial weighting function that balances the
influence of the subpixel xn

φn = (d(xv, xn))
−κ (9)

where d(xv, xn) is the distance between subpixels xv and
xn and κ is the power law index that controls the nonlinear
parameter of the distance decay model.

D. Determination of Regularization Parameters

Regularization parameter λ acts as a tradeoff parameter that
balances the influence of the data fidelity and regularization
terms on the solution of (4). If the regularization parameter
is too low, the solution is unsmoothed and susceptible to the
noise in inputted fraction images. Otherwise, the regularization
term has a dominant effect on the solution, generating an over-
smoothed superresolution land cover map. The data fidelity and
regularization terms should be appropriately balanced when the
SRM model based on regularization is implemented. A number
of selecting rules, such as L-curve method [48], [49] and
generalized cross-validation [57], [58], have been proposed for
identifying the optimal value of the regularization parameter.

In this paper, the L-curve method is used to determine the
optimal value of λ [48], [49]. This method does not require
any a priori knowledge of noise level, making it a fully data
driven approach. It has been popular since its inception and
has shown satisfactory performance in many practical inverse
problems. This method is a graphical tool for analysis. It shows
the relationship between the data fidelity and regularization
terms, which are D(X,Y,H) and R(X), respectively [see (4)].
For a given λ, the values of both terms are calculated from the
final superresolution land cover map. When these values are

plotted on a log-log scale for a range of λ values, the curve
takes on an “L” shape. The flat part of the L-curve corresponds
to the solution dominated by regularization errors, whereas the
vertical part indicates that the solution is dominated by data
errors. The optimal value of λ is at the corner of the curve where
the curvature is at its maximum; this value marks the optimal
balance between minimizing the regularization and data errors
in the solution.

E. Optimization by SA

The object function of the proposed SRM model in (4) is non-
convex, and the solution is a categorical field. Because of these
specifications, conventional optimization algorithms cannot be
used to solve the proposed model. Furthermore, the SRM prob-
lem is characterized by a large solution space, which expands
with land cover classes, the zoom factor, and image size. There-
fore, to solve the problem within a reasonable computational
time, we use the simulated annealing (SA) algorithm, which
has been proposed to solve various global optimization prob-
lems, including the SRM problem [22], [36], [46], [52], [54].

Using the SA algorithm, we iteratively change the land cover
class labels of subpixels to minimize the object function value
in (4). The approach in [36] is adopted in this paper. The
annealing schedule is based on a power law decay function,
where temperature Tn at iteration n is changed to

Tn = σ · Tn−1. (10)

Parameter σ ∈ (0, 1) controls the decrease rate of tempera-
ture Tn. In the initialization step, all the subpixels in each coarse
pixel are randomly labeled according to the number of each
class calculated by fraction images. For each iteration, all the
subpixel labels are updated using a rowwise visiting scheme.
The land cover class label of a subpixel is changed if doing
so can decrease the object function value in (4). If this change
increases the object function value, then this change will be
accepted with a low probability according to the current tem-
perature. The algorithm terminates when the minimum value of
the object function is obtained, i.e., the previously fixed number
of iterations is achieved or less than 0.1% of the subpixel labels
are changed across three iterations.

The entire flowchart of the proposed model is shown in
Fig. 1.

III. EXPERIMENTS AND RESULTS

A. Synthetic Landsat Images

1) Data Description: In this experiment, the performance
of the proposed SRM model is validated using synthetic multi-
spectral images. The study area is located in the Brazilian Ama-
zon Basin. A Landsat Enhanced Thematic Mapper (ETM+)
scene acquired on July 18, 2005 is used. The original Landsat
ETM+ image used for analysis includes bands 1, 2, 3, 4, 5,
and 7. The experiment is conducted with a subset of 450 ×
450 pixels, as shown in Fig. 2(a). The original Landsat ETM+
image is degraded to simulate coarse-resolution multispectral
images. For a certain zoom factor, the digital number (DN)
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Fig. 1. Flowchart of the proposed SRM model.

Fig. 2. (a) Landsat ETM+ multispectral image (band 4-3-2). (b)–(e) Degraded
Landsat ETM+ images with zoom factor z = 3, 6, 10, and 15. (f) Reference
land cover map digitized from (a).

values of the coarse-resolution pixel simulated for all the bands
are the average DN values of the corresponding original Land-
sat ETM+ pixels. Four zoom factors, z = 3, z = 6, z = 10, and
z = 15, are used in the experiment. Accordingly, the simulated
coarse-resolution multispectral images are of 150 × 150 pixels
with a resolution of 90 m, 75 × 75 pixels with a resolution of
180 m, 45 × 45 pixels with a resolution of 300 m, and 30 ×
30 pixels with a resolution of 450 m [see Fig. 2(b)–(e)]. The
SRM model was used to generate land cover maps with 450 ×
450 pixels and a resolution of 30 m from the aforementioned
simulated coarse-resolution multispectral images. To assess the
performance of the proposed SRM model, we manually digitize
the original Landsat ETM+ image, generating a reference fine-
resolution land cover map, which comprises four land cover

classes [see Fig. 2(f)]. The accuracy of the reference map is
evaluated by using 200 ground sites extracted from a Google
Earth image of the study area. The overall accuracy of the
reference map is 96.5%.

2) Model Comparison and Validation: The SRM model that
uses the L1 norm as the data fidelity term (L1_SRM) and
the SRM model using the L2 norm as the data fidelity term
(L2_SRM) are both used in this experiment. These proposed
SRM models are compared with existing models for validation.
The first model used for comparison is the maximal likeli-
hood classification (MLC) model, a popular pixel-based hard
classification model. The other three SRM models used for
comparison are the MRF-based SRM model (MRF_SRM) [52],
pixel-swapping-based SRM model (PS_SRM) [23], and HNN-
based SRM model (HNN_SRM) [7]. Among these, MRF_SRM
is directly applied to original coarse-resolution multispectral
images. PS_SRM uses the fraction images generated by spec-
tral unmixing as input and keeps class fractions unchanged.
HNN_SRM uses the fraction images as input, and the con-
straints imposed by class fractions are relaxed.

The performance of all these models is visually and quan-
titatively assessed on the basis of the reference fine-resolution
land cover map. The quality of the superresolution land cover
maps produced by various models is assessed using the Kappa
value, defined at the fine-resolution pixel level. We also use
the root-mean-square error (RMSE) to compare the class area
proportions in the resultant superresolution land cover map with
those in the reference land cover map. The RMSE of the cth
land cover class RMSEc is calculated as follows:

RMSEc =

√√√√ 1

M1 ×M2

M1×M2∑
V=1

(
ycV,SRM − ycV,REF

)2

(11)

where ycV,SRM denotes the fraction value of the cth class in
the coarse-resolution pixel V in the resultant superresolution
land cover map and ycV,REF denotes the fraction value of the
cth class in the coarse-resolution pixel V in the reference land
cover map.

3) Fraction Image Generation: Among all the aforemen-
tioned algorithms, MLC and MRF_SRM are directly applied
to the multispectral image, whereas fraction images are used
as input for L1_SRM, L2_SRM, PS_SRM, and HNN_SRM.
Therefore, the fraction images must be produced by spectral
unmixing before these SRM models are applied. To compare
the effects of different fraction images on the results, two
widely used spectral unmixing models are applied: the linear
spectral mixture analysis (LSMA) model [59] and the multiple
endmember spectral mixture analysis (MESMA) model [60].

In LSMA, the spectrum of the image pixels is determined
by the sum of each endmember spectrum multiplied by its
area percentage. Using the original Landsat ETM+ image, we
directly obtain the endmember spectra in the simulated coarse-
resolution multispectral images from the pixels dominated by
an endmember land cover class. For each land cover class,
50 image spectra (pixels) are individually obtained. The av-
erage spectra are considered endmember spectra and used for
spectral unmixing. Although LSMA is widely used in various
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TABLE I
FRACTION RMSE VALUES OF LSMA AND MESMA FOR SYNTHETIC LANDSAT ETM+ IMAGES AT DIFFERENT ZOOM FACTORS

Fig. 3. Scatter plots of class area proportions from experiments at z = 6. The horizontal axis represents reference class proportions. The vertical axis represents
class fractions produced by (a)–(d) LSMA and (e)–(h) MESMA (left to right, classes 1–4).

applications for different landscapes, it fails to account for
spectral variations in the same land cover class because it uses
fixed endmembers for all the pixels in an image.

MESMA is an extension of LSMA, enabling endmembers
to vary on a pixel basis and represent more accurate spectral
variability. By evaluating and selecting the best combination
of endmember spectra from all possible combinations for each
pixel, MESMA can precisely estimate land cover fraction. In
this experiment, we use the average endmember RMSE to
choose the optimal endmember spectra for each land cover class
from selected image spectra [60]. Using the optimal endmem-
bers, two-endmember, three-endmember, and four-endmember
unmixing models are used, and the model with the smallest
error is chosen for generating the final fraction images.

Table I shows the RMSEs of the fraction images derived
using different spectral unmixing models. The zoom factor
exerts no significant effect on spectral unmixing. With LSMA,
class 1 has the lowest RMSE, whereas classes 3 and 4 have
the highest. With MESMA, class 2 has the lowest RMSE,
and classes 3 and 4 exhibit a decreased RMSE of about 0.08.

Therefore, the mean RMSE of LSMA is about 0.3 for all zoom
factors, and that of MESMA is about 0.23, suggesting that
MESMA is superior to LSMA.

The scatter plots (see Fig. 3) of the land cover fractions of
the reference fine-resolution map and those produced by LSMA
and MESMA at z = 6 show that dispersion with LSMA is
larger than that with MESMA. The fraction error histograms
that correspond to the scatter plots shown in Fig. 4 reveal
that the error histograms of different land cover classes vary
with spectral unmixing models. Visually, the error histogram of
class 1 [see Fig. 4(a)] is close to a normal distribution when
LSMA is used. The error histogram of class 3 has a bimodal
distribution, whereas that of class 4 has a significant tailed dis-
tribution on the right portion. When MESMA is used, however,
the bimodal distribution of class 3 and the tailed distribution of
class 4 disappear. All the error histograms are close to a normal
distribution.

4) L-Curve Method: In this section, the method for deter-
mining the value of λ with the L-curve criterion is validated.
The L1_SRM or L2_SRM model with different values of λ
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Fig. 4. Histograms of class proportion errors at z = 6 for (a)–(d) LMSA and (e)–(h) MESMA (left to right, classes 1–4).

is first used to generate the superresolution land cover map.
The values of D(X,Y,H) and R(X), which are the residual
fraction error and solution smoothness for each superresolution
land cover map, respectively, are then calculated and plotted on
a log-log scale. A cubic smoothing spline curve is fitted as the
L-curve by using the plotted points. Finally, the curvature of
the fitted curve is calculated, and the maximal curvature value
is considered the corner.

Fig. 5 shows the representative samples of the L-curve at
z = 6 for both L1_SRM and L2_SRM models, which use the
fraction images estimated by LSMA and MESMA. The points
of D(X,Y,H) and R(X), as well as the fitted cubic smoothing
spline curve, are shown on the top line of Fig. 5. The calculated
curvature that corresponds to the fitted spline curve is shown
on the middle line. On the bottom line, the Kappa coefficients
of the final superresolution land cover map for each value of
λ are accordingly plotted. In all the images, the “L” shape of
the fitted curve is noticeable, although the shapes themselves
differ. The low value of λ represents the vertical part in the
L-curve, where D(X,Y,H) is low and R(X) is high. There-
fore, the final superresolution land cover map is dominated by
the data fidelity term. The increase in λ increases D(X,Y,H)
and decreases R(X). Therefore, the spatial regularization term
increasingly influences the final superresolution land cover
map. Accordingly, the flat part of the L-curve corresponds to
a solution with a high value of λ dominated by fraction errors.
On the basis of the L-curve criterion, the optimal value of λ is
found at the corner where the curvature is at its maximum.

A similar trend illustrated by the L-curve exists in the re-
lationship between the Kappa and the λ values. The Kappa

value is also low when λ is low because the SRM solution
is characterized by considerable noise. The increase in λ also
increases the Kappa value because of the elimination of noise
in the SRM solution. Once the Kappa reaches its maximal
value, it begins to decrease with increasing λ because of the
oversmoothed result. For all the images in this experiment, the
maximal values of the calculated curvature of the L-curve cor-
respond to the maximal Kappa values. Although not the highest,
the Kappa values of the final superresolution land cover maps
generated with the values of λ chosen by using the L-curve
criterion are desirable, verifying the validity of the L-curve
criterion in identifying the regularization parameter.

5) Model Parameters: The zoom factor considerably affects
the performance of the proposed SRM models (see Table II).
With the increment in z, the spatial location of subpixels tends
to be incorrect, particularly under a larger zoom factor. Kappa
values decrease by about 0.01, 0.02, and 0.04 when z increases
from 3 to 6, 6 to 10, and 10 to 15, respectively, for L1_SRM and
L2_SRM which use LSMA fraction images. The Kappa values
decrease by 0.02, 0.03, and 0.07 when z increases from 3 to
6, 6 to 10, and 10 to 15, respectively, for the models that use
MESMA fraction images.

The spectral unmixing model generates the input of L1_SRM
and L2_SRM, thereby influencing SRM performance. Kappa
values more significantly improve for MESMA than for LSMA,
with the models having different values of z, w, and κ (see
Table II). At a z smaller than 15, the increments in Kappa
values of L1_SRM and L2_SRM that use MESMA fraction
images are higher than 0.1 compared with the Kappa values
of the models that use LSMA fraction images. At a small z,
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Fig. 5. L-curves, curvatures, and Kappa values of the degraded Landsat ETM+ image at z = 6. (a) L1_SRM that uses LSMA fraction images. (b) L2_SRM that
uses LSMA fraction images. (c) L1_SRM that uses MESMA fraction images. (d) L2_SRM that uses MESMA fraction images.

the accuracy of SRM more strongly depends on the fraction
images. By contrast, at a large z, the accuracy of SRM depends
to a relatively less extent on the fraction images because the
spatial location of subpixels is hard to be mapped correctly,
resulting in relatively unsustainable mapping accuracy.

The Kappa values of L2_SRM (see Table II) are relatively
higher than those of L1_SRM in most cases because the error
distributions of the fraction images are closer to a normal
distribution (see Fig. 4). The L2 norm used in L2_SRM gen-
erally performs better for Gaussian noise, whereas the L1 norm
used in L1_SRM performs better for Laplacian noise. Given
the same fraction images and model parameters, however, the
differences between L2_SRM and L1_SRM are minimal, and
the Kappa values of L2_SRM are only about 0.005 higher than
those of L1_SRM. Moreover, the optimal λ values in L2_SRM
are lower than those in L1_SRM because the class fraction
residual vector has a range of [−1, 1], generating an L2 norm
residual vector that is smaller than the L1 norm residual vector.

The value of w influences the number of subpixels consid-
ered in the computation of the regularization term. More sub-
pixels are therefore introduced to influence the regularization
term of a particular subpixel with the increment in w. Table II
shows that the Kappa values are low when w = 3 because
only the eight nearest neighboring subpixels that are spatially
correlated within a small range affect the regularization term
calculation for a target subpixel. In this case, the resultant super-
resolution land cover map is usually unsmoothed. By contrast,
when w > 3, the Kappa values of the superresolution land cover
maps generated by L1_SRM and L2_SRM are similar and
higher than those of the land cover maps generated when w=3.

Nonlinear parameter κ affects the influence of spatially
neighboring subpixels on the central subpixel with respect to

geometric distance. A high κ assigns low weights to spatially
neighboring subpixels that are geometrically distant from a
target subpixel. The optimal value of κ is related to the value
of w, and the Kappa values are low for different values of κ
when w = 3 (see Table II). When w > 3, a low value of κ in
L1_SRM or L2_SRM can usually generate superresolution land
cover maps with high Kappa values. Moreover, in most cases,
the optimal values of λ tend to increase with the increment in κ
for both L1_SRM and L2_SRM.

6) Comparison With Other Algorithms: Fig. 6 (z = 6)
shows the resultant superresolution land cover maps gener-
ated by MLC and MRF_SRM, which are directly applied to
the coarse-resolution image, as well as L1_SRM, L2_SRM,
PS_SRM, and HNN_SRM, which are applied to the fraction
images produced by LSMA and MESMA. MLC generates a
pixel-based land cover map with jagged boundaries and missed
the detailed spatial information on land cover [see Fig. 6(a)].
MRF_SRM generates a superresolution land cover map with
smooth boundaries. However, many corners of the land cover
boundaries are round, and the shapes of many patches are in-
correctly mapped [see Fig. 6(f)]. The superresolution land cover
maps produced by PS_SRM are characterized by many speckle
artifacts because of the fraction errors caused by spectral un-
mixing [see Fig. 6(b) and (g)]. HNN_SRM decreases speckle
artifacts, especially by using the fraction images produced by
MESMA, whose fraction error is less severe [see Fig. 6(c) and
(h)]. By contrast, the superresolution land cover maps produced
by L1_SRM and L2_SRM are similar to the reference because
more speckle artifacts are eliminated and the shape boundaries
are well retained [see Fig. 6(d), (e), (i), and (j)]. Using MESMA
fraction images instead of LSMA fraction images as input
can produce better superresolution land cover maps for both
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TABLE II
KAPPA VALUES AND FRACTION RMSE VALUES OF L1_SRM AND L2_SRM USING FRACTION IMAGES PRODUCED BY LSMA

AND MESMA AS INPUT, FOR SYNTHETIC LANDSAT ETM+ IMAGES AT DIFFERENT ZOOM FACTORS

L1_SRM and L2_SRM. No obvious difference exists between
the superresolution land cover maps generated by L1_SRM and
L2_SRM when the same fraction images are used as input.

The Kappa values and fraction RMSE values of the different
models are shown in Table III, which indicates that all the
accuracy levels are affected by the zoom factor. With the
increment in z, Kappa values tend to decrease, and fraction
RMSE values tend to increase. For a given z, the Kappa values
of SRM are usually higher than those of MLC, and the fraction
RMSE values of SRM are usually lower than those of MLC.

Among the SRM algorithms that use LSMA fraction images as
input, PS_SRM exhibits the lowest Kappa values. The Kappa
values of HNN_SRM are higher than those of PS_SRM because
HNN_SRM can eliminate fraction errors to a certain extent.
L1_SRM and L2_SRM generate superresolution land cover
maps with Kappa values and fraction RMSE values that are
higher and lower, respectively, than those of the superresolution
land cover maps generated by PS_SRM and HNN_SRM. This
difference indicates the effectiveness of the proposed model in
reducing fraction errors. The Kappa values and fraction RMSE
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Fig. 6. Land cover maps generated from degraded Landsat ETM+ image at z = 6 by (a) MLC and (f) MRF_SRM. Land cover maps generated by (b) PS_SRM,
(c) HNN_SRM, (d) L1_SRM, and (e) L2_SRM that use LSMA fraction images. Land cover maps generated by (g) PS_SRM, (h) HNN_SRM, (i) L1_SRM, and
(j) L2_SRM that use MESMA fraction images.

TABLE III
KAPPA VALUES AND FRACTION RMSE VALUES OF DIFFERENT MODELS, FOR SYNTHETIC LANDSAT ETM+ IMAGES AT DIFFERENT ZOOM FACTORS

values of L1_SRM and L2_SRM, which use LSMA fraction
images, are slightly worse than those of MRF_SRM because
the LSMA fraction images are characterize by excessively large
errors. By contrast, using MESMA fraction images as input
improves L1_SRM and L2_SRM. The Kappa values increase
by about 0.1 and exceed those of MRF_SRM. The fraction
RMSE values decrease by about 0.1 and become lower than
those of MRF_SRM. Therefore, the proposed model is more
flexible than MRF_SRM because the former allows for the
selection of more accurate fraction images as input.

B. Real IKONOS Images

The performance of the proposed model in addressing a real
natural phenomenon is assessed using an IKONOS image to
provide a more realistic test. The test area is a farmland lo-
cated at nearby Dujiangyan City, Sichuan Province, China. The
experiment is conducted using a real multispectral IKONOS
image with 40 × 40 pixels (at 4-m spatial resolution), as shown
in Fig. 7(a). A reference fine-resolution thematic map (at 1-m

Fig. 7. (a) IKONOS multispectral image (band 4-3-2). (b) IKONOS panchro-
matic image. (c) Reference land cover map digitized from the panchromatic
image.

spatial resolution) was generated by manually digitizing the
corresponding panchromatic band of the image shown in
Fig. 7(b). The reference land cover map comprises four crisp
land cover classes [see Fig. 7(c)]. We evaluate the accuracy of
the reference map by using 120 ground sites extracted from a
Google Earth image of the study area. The overall accuracy of
the reference map is 94.2%. Similar to the synthetic Landsat
image experiment, endmembers are manually chosen in the
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Fig. 8. Land cover maps generated from IKONOS image by (a) MLC and (f) MRF_SRM. Land cover maps generated by (b) PS_SRM, (c) HNN_SRM,
(d) L1_SRM, and (e) L2_SRM that use LSMA fraction images. Land cover maps generated by (g) PS_SRM, (h) HNN_SRM, (i) L1_SRM, and (j) L2_SRM that
use MESMA fraction images.

TABLE IV
KAPPA VALUES AND FRACTION RMSE VALUES OF DIFFERENT MODELS FOR THE IKONOS IMAGE

original 4-m spatial resolution image, and LSMA and MESMA
are used to generate fraction images. Using the fraction images
as input, L1_SRM and L2_SRM models are applied to generate
the final superresolution land cover map. The value of λ is
selected with the aforementioned L-curve criterion. The param-
eters of all the models are the same as those in the experiment
on the synthetic Landsat ETM+ images.

The final land cover maps of MLC, together with the re-
sults of MRF_SRM, PS_SRM, HNN_SRM, L1_SRM, and
L2_SRM, are displayed in Fig. 8. Similar to the results on
the degraded Landsat ETM+ images, the resultant land cover
map generated by MLC has jagged boundaries, whereas the
superresolution land cover map generated by MRF_SRM has
smooth boundaries. Many speckle artifacts exist in the super-
resolution land cover map generated by PS_SRM; HNN_SRM
reduces these speckle artifacts, most of which are eliminated
by L1_SRM and L2_SRM. The SRM models that use MESMA
fraction images show visible improvement over those that use
LSMA fraction images. However, many linear features disap-
pear in the results of L1_SRM and L2_SRM because of the
spatial regularization model, which favors a more homogeneous
land cover map over isolated pixels. This preference results in
the loss of some small targets of interest.

The accuracy measures of all the approaches are shown
in Table IV. The Kappa values of PS_SRM are lower than
those of MLC, and the fraction RMSE values of PS_SRM
are higher than those of MLC. When MLC is applied, all the

subpixels in the mixed pixels are assigned to the land cover
class with the highest area percentage. Consequently, some
small area land cover classes are overlooked, but the largest
area land cover class in the mixed pixel is correctly mapped.
However, when the PS_SRM model is applied, parts of the
largest area land cover class in the mixed pixels are incorrectly
mapped as other land cover classes because of the spectral
unmixing error. As a result, a less precise superresolution land
cover map is produced. For other SRM models, most speckle
artifact areas disappear because of the spatial smoothing effect
of MRF_SRM and the spatial regularization implemented with
L1_SRM and L2_SRM. Thus, the Kappa values of MRF_SRM,
L1_SRM, and L2_SRM (LSMA fraction images) are similarly
high. Moreover, the Kappa values increase and the fraction
RMSE values decrease for all the SRM models when MESMA
fraction images are used as input.

C. Real Hyperspectral Images

The performance of the proposed model is also tested on a real
hyperspectral Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) image. The AVIRIS image includes 224 bands (spec-
tral range of 0.4–2.4 μm) with a spatial resolution of 17 m.
The experiment is conducted using a subset of 180 × 70 pixel
AVIRIS images of an airport located in Moffett Field, San
Francisco Bay [see Fig. 9(a)]. The reference fine-resolution
land cover map is produced by manual digitization using a



LING et al.: SUPERRESOLUTION LAND COVER MAPPING USING SPATIAL REGULARIZATION 4435

Fig. 9. (a) AVIRIS hyperspectral image (band 40-20-15). (b) Google Earth
image. (c) Reference land cover map.

high-spatial-resolution Google Earth image of 900 × 350 pixels
[see Fig. 9(b) and (c)]. The zoom factor is set to 5. Four land
cover classes, namely, water, grass, dark surface, and white
surface, appear on the images. The endmember signatures in the
AVIRIS image are manually selected, and LSMA and MESMA
are applied to generate fraction images. The values of λ in
L1_SRM and L2_SRM are selected with the aforementioned
L-curve criterion. The parameters of all the models are the
same as those in the experiment on the synthetic Landsat ETM+
images.

The land cover maps produced by the MLC and SRM models
are shown in Fig. 10. MLC generates a land cover map with
gaggled boundaries, whereas the SRM models generate land
cover maps with smooth boundaries. Unlike the land cover
maps produced by the models that use LSMA fraction im-
ages, those produced by PS_SRM and HNN_SRM, which use
MESMA fraction images, show fewer speckle artifacts. The
land cover boundaries produced by L1_SRM and L2_SRM are
straighter. However, most of the path objects located in the
upper side of the scene are eliminated in the land cover maps
produced by L1_SRM and L2_SRM. In general, the land cover
maps produced by the SRM models that use MESMA fraction
images more closely resemble the reference map than those
produced by the SRM models that use LSMA fraction images.

The accuracy statistics of different models are shown in
Table V. The Kappa value of MLC is low because of the mixed
pixel problem. A substantial difference in Kappa values exists
among various SRM models. In general, the Kappa values of
the SRM model that uses MESMA fraction images are higher
than the Kappa values of those that use LSMA fraction images.
This result is attributed to the fraction RMSE of MESMA
(0.2302), which is lower than that of LSMA (0.3276). In
addition, the Kappa values of L1_SRM and L2_SRM are higher
than those of PS_SRM and HNN_SRM because L1_SRM and
L2_SRM can better eliminate speckle artifacts, showing the
advantages of the proposed models.

D. Discussion

The theoretical and experimental results of this paper confirm
that the accuracy of fraction images is important in SRM and
that reducing fraction image errors increases SRM accuracy.
In general, the fraction images generated by the MESMA un-
mixing model exhibit lower errors than those generated by the
LSMA unmixing model. The SRM model that uses MESMA
fraction images generates superresolution maps with accuracy
levels that are higher than those generated by the models that
use LSMA fraction images. This result supports the idea that
high-accuracy fraction images can increase the accuracy of
superresolution maps produced by SRM. The experimental
results show that the regularization term in the proposed model
can, to a certain extent, reduce fraction image errors by spatially
smoothing land cover patches. However, a larger regularization
parameter is often needed to reduce large fraction errors, caus-
ing more detailed land cover information to be simultaneously
eliminated. Thus, selecting an optimal spectral unmixing model
can minimize fraction image errors and increase the accuracy of
SRM models that use fraction images as input. Although frac-
tion image errors can rarely be avoided by spectral unmixing
models [4], [5], we can select spectral unmixing models, such
as nonlinear unmixing models, with the least fraction error as
input to generate a superresolution map with the highest accu-
racy. Within those SRM models, MRF_SRM is directly applied
on remotely sensed images by using spectral constraints, which
is indeed the simple Gaussian spectral unmixing algorithm, in-
stead of the proportion constraints provided by fraction images.
The experimental results show that the proposed SRM model,
which uses MESMA fraction images, generates superresolution
maps with accuracy higher than that of the maps generated by
MRF_SRM. Therefore, the proposed SRM models are flexible
because different spectral unmixing algorithms can be used to
produce land cover fraction images as SRM input.

In the experiments, the L1 and L2 norms are tested as the
data fidelity terms. The accuracy of superresolution land cover
maps varies with different norms. In general, the choice of the
data fidelity term should correspond with the feature of noise
included in the inputted fraction images, where the L2 norm
is appropriate when noise distribution is Gaussian and the L1
norm is appropriate when noise distribution is Laplacian. In
practice, adopting a mixed L1–L2 norm in the SRM data fidelity
term should be more suitable because fraction image noises are
often space-variable fusion errors of different distributions.

We use the maximal spatial dependence principle, which is
identical to the smoothness principle, for spatial regularization.
It is appropriate for smoothing a homogeneous region within
which uniform land cover classes can be found. However, it
is unsuitable in images with edges because it tends to over-
smooth such edges. Edge-preserving regularization terms, such
as anisotropic land cover dependence models [11], [14], can
also be adopted in the regularization term of the proposed
model to preserve edges and detailed information on land cover
patches.

The regularization parameter has an important function in
L1_SRM and L2_SRM; it is used to balance the contribution
of the regularization and data fidelity terms. In this paper,
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Fig. 10. Land cover maps generated from ARIVIS image by (a) MLC and (f) MRF_SRM. Land cover maps generated by (b) PS_SRM, (c) HNN_SRM,
(d) L1_SRM, and (e) L2_SRM that use LSMA fraction images. Land cover maps generated by (g) PS_SRM, (h) HNN_SRM, (i) L1_SRM, and (j) L2_SRM that
use MESMA fraction images.

TABLE V
KAPPA VALUES AND FRACTION RMSE VALUES OF DIFFERENT MODELS FOR THE AVIRIS IMAGE

the L-curve method is used to select the optimal value of
the regularization parameter. Although the L-curve method
effectively selects the optimal regularization parameter, it re-
quires a set of superresolution land cover maps produced by
L1_SRM (or L2_SRM) with different regularization parameter

values. Other methods widely used for regularization should be
further studied [51]. We adopt a fixed regularization parame-
ter, which disregards local properties. Homogeneous regions
typically often require a high-weight regularization parameter
to remove speckle artifacts, whereas class boundaries require
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TABLE VI
RUNNING TIME OF DIFFERENT SRM MODELS FOR DIFFERENT IMAGES

a low-weight regularization parameter to maintain boundary
shapes. Applying a spatially adaptive method for regularization
parameter estimation can solve this problem [53].

Program run time influences the application of the SRM
models. All the models are tested on an Intel Core 2 Processor
2.66-GHz Duo CPU with 1.98-GB RAM using MATLAB ver-
sion 7.3. The iteration number is 120 for PS_SRM, MRF_SRM,
L1_SRM, and L2_SRM and 4000 for HNN_SRM. The run
times of different SRM models are listed in Table VI. Run
time increases with image size and zoom factor for different
SRM models. PS_SRM converges faster than the other SRM
algorithms. The complexity of the MRF_SRM model is related
to the number of bands and land cover classes, and its run time
increases with the number of bands and land cover classes. For
the PS_SRM, HNN_SRM, L1_SRM, and L2_SRM models that
use fraction images as input, run time increases with the number
of land cover classes. The run times of L1_SRM and L2_SRM
are much shorter than those of MRF_SRM and HNN_SRM,
demonstrating the advantages of the proposed models.

IV. CONCLUSION

This paper considers the superresolution land cover mapping
problem from a new perspective based on regularization theory,
which considers SRM an inversion problem. This new view-
point aims to recover superresolution land cover maps from
inputted fraction images by using an observation model that
connects them and by exploiting a priori knowledge about
the land cover maps. It is unlike the traditional models that
consider SRM as an optimization problem, in which the spatial
dependence is maximized as the goal and the fraction images
are maintained as constraints. Considering SRM under the
perspective of a regularization problem can relevantly be a
unified approach to reconstructing final superresolution land
cover maps. The proposed approach is also easy to implement
and eliminates the errors caused by inputted fraction images.

Within the regularization framework, two SRM models are
constructed by using spatial dependence as the regularization
term and the L1 or L2 norm as the data fidelity term. The pro-
posed L1_SRM and L2_SRM models are solved with the SA
algorithm. The regularization parameter is selected by the
widely used L-curve method for the inversion problem. Syn-
thetic Landsat ETM+, real IKONOS, and real AVIRIS images
are used to test the efficacy of the proposed model. LSMA and
MESMA algorithms are applied to estimate fraction images.
The resultant superresolution land cover map from the proposed
model depends on the accuracy of inputted fraction images.
Using the L1 or L2 norm as the data fidelity term should
depend on fraction error distribution. Moreover, the L-curve

method effectively selects the optimal regularization parameter.
The accuracy of the resultant superresolution land cover map
produced by the proposed SRM model is higher than that of the
maps produced by hard classification and several existing SRM
algorithms. The Kappa coefficient increases, and the RMSE of
the fraction images decreases, showing the effectiveness of the
proposed SRM framework.

This proposed framework more effectively solves the SRM
problem than existing approaches. However, other possibili-
ties for improvement should still be considered. For example,
different data fidelity models can be combined with various
land cover spatial pattern models to generate various models
under this framework. Some site-specific information can also
be incorporated to improve model effectiveness. Moreover,
the regularization parameter value selection method should be
more comprehensively studied, and a spatial adaptive approach
should be explored.
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