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The assessment of landscape spatial patterns is a key issue in landscape management. Landscape pattern
indices (LPIs) are tools appropriate for analyzing landscape spatial patterns. LPIs are often derived from
raster land cover maps that are extracted from remotely sensed data through hard classification. However,
pixel-based hard classification methods suffer from the mixed pixel problem (in which pixels contain
more than one land cover class), making for inaccurate classification maps and LPIs. In addition, LPIs
generated by hard classification methods are characterized by grain sizes (the sampling unit sizes) that
limit the derived landscape pattern to a certain scale. Sub-pixel mapping (SPM) models can enable fine-
scale estimation of the spatial patterns of land cover classes without requiring additional data; hence,
this is an appropriate downscaling method for land cover mapping. The fraction images generated by
soft classification estimate the area proportion of each land cover class within each pixel, and using
these images as input enables SPM models to alleviate the mixed pixel problem. At the same time, by
transforming fraction images into a finer-scaled hard classification map, SPM models can minimize the
influence of grain size on LPIs calculation. In this research, simulated landscape thematic patterns that can
provide different landscape spatial patterns, eight commonly used LPIs and a SPM model that maximizes
the spatial dependence between neighbouring sub-pixels were applied to assess the efficiency of deriving
LPIs from sub-pixel model maps. Results showed that the SPM model can more precisely characterize
landscape patterns than hard classification methods can. Landscape fragmentation, class abundance, the

uncertainty in SPM, and the spatial resolution of the remotely sensed data influenced LPIs derived from
sub-pixel maps. The largest patch index, landscape division, and patch cohesion derived from remotely
sensed data with different spatial resolutions through the SPM model were suitable for inter-comparison,
whereas the patch density, mean patch area, edge density, landscape shape index, and area-weighted
mean shape index derived from the sub-pixel maps were sensitive to the spatial resolution of the remotely
sensed data.

© 2010 Elsevier Ltd. All rights reserved.
. Introduction

Landscape patterns are formed by a mixture of natural and
uman-managed patches that vary in size, shape, and arrangement

n space; the patterns are also correlated with landscape-scale eco-
ogical processes (Turner, 1990; Hulshoff, 1995). Landscape pattern
nalysis has drawn the attention of researchers because spatial
atterns can constrain, promote, or neutralize ecological processes
Li and Wu, 2004). Landscape pattern indices (LPIs) have become

ncreasingly popular to calculate and represent different aspects
f landscape spatial patterns (Wu et al., 2002; Li and Wu, 2004).
PIs have become common tools and are viewed as effective for
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landscape pattern assessment and management; hence, they are
important indicators in landscape ecology (Lausch and Herzog,
2002; Schindler et al., 2008; Peng et al., 2010).

LPIs are commonly calculated from categorical maps, which
are often raster format land cover maps extracted from remotely
sensed data. Numerous classification algorithms have been devel-
oped to generate land cover maps from remotely sensed data;
traditional classification methods, such as pixel-based supervised
classification and pixel-based unsupervised classification, are the
most popular methods. Although these methods have been widely
used as bases for calculating LPIs, hard classification suffers from
critical drawbacks. In hard classification, each pixel is classified into

one of many land cover classes, suggesting that land cover exactly
fits within the bounds of one or multiple pixels. However, a size-
able proportion of pixels may be a mixture of multiple land cover
classes. Within an instantaneous field-of-view, the observed digi-
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al number values of the remotely sensed imagery are always the
ntegration of the radiance from multiple land cover classes, and
he spectral mixing within single pixels results in the mixed pixel
roblem. Consequently, the mixed pixel problem leads to low clas-
ification accuracy (Fisher, 1997; Cracknell, 1998; Foody, 2002).
ard classification is a pixel-based classification method, in which
ixed pixels are ignored; misclassification of land cover classes due

o hard classification consequently yields errors in calculating LPIs
Langford et al., 2006; Shao and Wu, 2008).

Meanwhile, LPIs estimation is influenced by the grain size that
s used to quantify the LPIs. LPIs are dependent on the grain size
the sampling unit size) of the categorical map for the raster model,
.e., the grain size of the raster format land cover maps extracted
rom remotely sensed data (Uuemaa et al., 2005; Bailey et al., 2007).
n the creation of land cover maps, smaller grain-sized land cover
ata are usually preferred for landscape analysis; this is because

ncreasing grain size always leads to the simplification of landscape
onfiguration and decrement in the degree of spatial detail (Zheng
t al., 2008). The grain size of hard classification maps is dependent
n the spatial resolution of the remotely sensed data. The spatial
esolution is determined by the scale of observation (i.e., platforms
nd sensor types of remotely sensed data). LPIs derived from hard
lassification maps can represent landscape patterns only at a cer-
ain scale because the coarser spatial resolution of the remotely
ensed data disregards detailed spatial pattern information on land
over classes. This drawback limits the use of hard classification
aps in the derivation of LPIs.
Only a few studies have attempted to solve the mixed pixel

roblem and minimize the influence of grain size while deriving
PIs. Arnot et al. (2004) applied fuzzy c-means classifier to divide
he original image into fuzzy sets so that every location does not
all into a specific land cover class, while allowing each location
o belong, to a certain extent, to the two land cover classes within
he image. However, fuzzy sets were converted to Boolean classi-
cation (hard classification) by identifying the class on the basis
f the maximum fuzzy membership within any pixel. This pixel-
ased classification image suffered from coarse grain size and could
ot completely represent the spatial patterns of landscapes at the
ub-pixel scale. Scaling functions are used to describe variations
n LPIs with spatial resolution, thereby showing their potential in
ownscaling LPIs to minimize the influence of grain size. Saura
nd Castro (2007) used scaling functions to predict LPIs at the sub-
ixel scale. Nevertheless, scaling functions could neither precisely
ownscale LPIs nor provide sub-pixel land cover spatial patterns.
tatistical methods for downscaling land cover maps can provide
and cover spatial patterns at a finer scale (Gardner et al., 2008).
nstead of remotely sensed data, however, the input used was a
aster format land cover map. Furthermore, the influence of the
ixed pixel problem over the original input land cover maps was

ot considered.
As a solution to the mixed pixel problem, soft classification can

roduce a set of fraction images that predict the area proportion
f each land cover class within each pixel. Although the repre-
entation of land cover classes generated by this method is more
nformative and appropriate than that produced by hard classifica-
ion, directly applying it in calculating LPIs is difficult because no
ndication of how such classes are distributed spatially within each
ixel can be provided (Atkinson et al., 1997; Keshava and Mustard,
002). With sub-pixel mapping (SPM) models, however, fraction

mages generated by soft classification can be transformed into a
ner-scaled hard classification map that provides the spatial dis-
ribution of land cover classes within each coarse pixel. Thus, SPM
odels that generate finer scaled land cover maps have potential
or improving the accuracy of LPIs.

This study aims to derive LPIs from land cover maps that were
enerated by a SPM model. We intend to provide insights into the
s 11 (2011) 1160–1170 1161

following questions: Can the SPM model improve the accuracy of
LPIs? What are the main factors influencing the LPIs derived from
the sub-pixel maps at the sub-pixel scale?

2. Materials and methods

2.1. Simulated data

The modified random clusters (MRC) simulation method (Saura
and Martínez-Millán, 2000; Li and Wu, 2004; Shen et al., 2004) was
applied in this study to simulate various landscape patterns using
SIMMAP. We considered a simple binary (yes/no) classification of
a landscape (e.g., forest/non-forest) into a habitat or non-habitat
category and generated resulting binary images. MRC can simulate
a wide range of spatial patterns, in which landscape fragmenta-
tion and class abundance can be varied (Saura and Martínez-Millán,
2000). Parameter p in a MRC simulation controls the fragmenta-
tion of the landscape. Higher values of p (up to an upper limit of
pc ∼= 0.593) yield larger-sized and fewer patches; thus, the land-
scape pattern is more aggregated (less fragmented). The lowest
value of p that we used in the landscape simulation was p = 0.4
because degrees of fragmentation of p < 0.4 are not commonly
found in most landscapes. The increase in spatial aggregation as
a function of p is nonlinear but more rapid near pc. The propor-
tion of the area occupied by class 1 (A1, A2 = 100 − A1) was varied
from 10% to 90% in increments of 10% to cover a wide range of
landscape configuration possibilities; p was assigned values of 0.4,
0.45, 0.5, 0.525, 0.55, and 0.575, producing 54 different spatial
configurations (300 × 300 pixels for each simulated image). The
four-neighbourhood criterion was used in the simulation process
(Saura and Martínez-Millán, 2000).

Majority rules were applied to coarsen the images so that
remotely sensed data with different spatial resolutions were repre-
sented. Majority rules can produce aggregated patterns similar to
those obtained by remote sensors with coarser spatial resolutions
(Wu et al., 2002; Saura, 2004; Wu, 2004). The “degraded” image
pixels were assigned as the most frequent class in the windows of
F × F pixels, where F is the aggregation factor. Eight spatial resolu-
tions that correspond to the aggregation factors, namely, F = 2, 3, 4,
5, 6, 10, 12, and 15 pixels, were used in this research. The degraded
images also represent classification maps, generated through hard
classification methods, of different spatial resolutions. Examples of
the resultant patterns for F = 5 and F = 10 are shown in Fig. 1.

2.2. SPM model

SPM models can be divided into two main groups in terms of
goals. The first group considers the spatial dependence of land cover
classes, which indicates that sub-pixels that are closer together are
more likely to have the same class type than those that are further
apart. This SPM model aims to maximize the spatial dependence
between neighbouring sub-pixels (Atkinson et al., 1997; Atkinson,
2005; Tatem et al., 2001; Verhoeye and De Wulf, 2002; Mertens et
al., 2003; Ling et al., 2008). The second group necessitates ancillary
data to provide some priori spatial models at a finer scale. With the
spatial pattern information retrieved from ancillary training data
(e.g., aerial photographs), this SPM model aims to generate spatial
patterns of land cover classes at the sub-pixel scale that share char-
acteristics with the spatial patterns in the training data (Tatem et al.,
2002; Boucher et al., 2008; Boucher, 2009). Various algorithms such
as the Hopfield neural network (HNN) (Tatem et al., 2001; Tatem

et al., 2002), pixel swapping (Atkinson, 2005; Makido et al., 2007),
and Markov random field (Kasetkasem et al., 2005; Tolpekin and
Stein, 2009) have been proposed for use in SPM models in both
groups mentioned above.



Journal Identification = ECOIND Article Identification = 759 Date: May 6, 2011 Time: 7:17 pm

1162 X. Li et al. / Ecological Indicators 11 (2011) 1160–1170

Fig. 1. (a), (b), and (c) are simulated images for A1 = 30% (A1 represents class abundance of the focal class) and p = 0.4, 0.5, and 0.55, respectively (p is the parameter that controls
landscape fragmentation, and higher values of p yield more aggregated landscape pattern); (d), (e), and (f) represent a lower level of spatial resolution with aggregation factor
F pixel
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= 5 for the hard classification maps, and (g), (h), and (i) are the corresponding sub-
actor F = 10 for the hard classification maps, and (m), (n), and (o) are the correspond
over classes.

Only the first SPM model was considered in this research to
void the need for ancillary data, which are not easily acquired
n practice. The pixel-swapping algorithm (Atkinson, 2005) was
pplied in the model. With this algorithm, the class proportions
n the coarse resolution pixels (pixels of remotely sensed data)
emain identical before and after SPM; in addition, this algorithm

s considered a relatively efficient method in terms of accuracy
nd computation time (Makido et al., 2007; Atkinson, 2009). In
he initializing step of the pixel-swapping algorithm, the sub-pixels
maps; (j), (k), and (l) represent a higher level of spatial resolution with aggregation
b-pixel maps. Black is the focal land cover class and grey pertains to the other land

that represent different land cover classes are randomly allocated
within each coarse pixel based on the class proportions extracted
from soft classification. Only binary maps were considered in this
research; hence, the sub-pixel is assigned the values “0” or “1”,
representing the two land cover classes (non-habitat and habitat).
Then, the sub-pixels are swapped iteratively to maximize the spa-

tial dependence between neighbouring sub-pixels based on the
distance weighted function (attractiveness, Ai) of each sub-pixel.
The nearest neighbour function that gives equal weight to its near-
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st neighbouring sub-pixels is applied. In the nearest neighbour
odel, attractiveness Ai for sub-pixel Xi is calculated by the sum of

he sub-pixels, which have the same land cover class (values “0” or
1”) as Xi.

i =
∑n

j=1
Z(Xj) (1)

here n is the number of neighbours of sub-pixel Xi and Z(Xj) is the
alue of class Z at the jth pixel location Xj.

Within a coarse pixel, four Ai are computed. Ai 0 bef is the min-
mum Ai value allocated to a “0” in location x and Ai 1 bef is the

inimum Ai value allocated to a “1” in location y. Ai 0 aft is the Ai
alue for “0” in location y and Ai 1 aft is the Ai value for “1” in loca-
ion x. If the sum of Ai 0 aft and Ai 1 aft is larger than that of Ai 0 bef
nd Ai 1 bef, this pair of sub-pixels is swapped. If the coarse pixel
ontains only one land cover class, then no swapping of sub-pixels is
erformed. This procedure is iteratively performed until the swap-
ing of sub-pixels can no longer increase the spatial dependence of

and cover classes within the entire image.
The sizes of sub-pixels for different degraded images are set

qual to the minimum mapped unit of the MRC simulated images,
.e., one pixel of each simulated image that contains 300 × 300 pix-
ls. This approach ensures that each sub-pixel represents only one
and cover class. It also enables the assessment of the accuracy
f LPIs derivation from remotely sensed data at different levels
f spatial resolutions (i.e., different aggregation factors used to
oarsen the images). At different coarse spatial resolutions, the con-
ributions of each sub-pixel were added up to obtain a pixel-scale
roportion for each land cover class. These pixel-scale proportions
re considered the output of soft classification (Makido et al., 2007).
oreover, SPM is an inverse problem that reconstructs a finer-

caled land cover map from a set of class proportions through a
oarse-resolution image. However, this inverse problem under-
etermines that different fine-scaled land cover maps can match
he original coarse-resolution class proportions; uncertainties also
xist in the results of fine-scaled land cover maps (Atkinson, 2009;
oucher, 2009). The pixel-swapping algorithm used in this study is
spatial optimization approach. The goal is to maximize the spatial
ependence between neighbouring sub-pixels, and the constraint

s to match the original pixel proportions generated by the soft clas-
ification method. Therefore, the results of the sub-pixel maps that
ere generated by the pixel-swapping algorithm differ because of

he uncertainty in SPM. For each degraded image, we ran the model
0 times to achieve reliable LPIs through SPM.

.3. Analyzed LPIs

Eight commonly used LPIs, which characterize the composi-
ion and configuration of landscapes, were analyzed (Jaeger, 2000;
aura, 2004; Saura and Castro, 2007). Using Fragstats 3.3 (McGarigal
t al., 2002), all LPIs were computed at the class level, i.e., only
atches that belong to a certain class were considered. The eight
PIs were patch density (PD), mean patch area (MPA), edge den-
ity (ED), landscape shape index (LSI), area-weighted mean shape
ndex (AWMSI), largest patch index (LPI), landscape division (LD),
nd patch cohesion (PC).

. Results and discussion

.1. Comparison of LPIs derived from the sub-pixel and hard
lassification maps
The variations of LPIs with coarse spatial resolution at both the
ixel scale (i.e., LPIs derived from the hard classification maps) and
he sub-pixel scale (i.e., LPIs derived from the sub-pixel maps) are
hown in Figs. 2–4. Compared with the reference landscape pat-
s 11 (2011) 1160–1170 1163

tern of the focal land cover class, the accuracy of LPIs was improved
when the SPM model was used; this improvement is attributed to
the advantages of the SPM model in terms of solving the mixed pixel
problem and minimizing the influence of grain size on the quan-
tification of LPIs. In comparison with hard classification methods,
considerable improvements in accuracy were achieved using the
SPM model in calculating PD, MPA, ED, LSI, and AWMSI in all cases,
as well as LPI, LD, and PC in certain circumstances. The accuracies
of the LPIs derived from the sub-pixel maps varied considerably
with landscape fragmentation, class abundance, and the spatial
resolution of the remotely sensed data. First, more accurate LPIs
were derived from the sub-pixel maps in less fragmented land-
scapes. Second, the derived LPI, LD, and PC were very close to the
reference LPIs when the focal class occupied the majority of the
landscape area (high class abundance). Conversely, the accuracy of
PD, MPA, ED, LSI, and AWMSI did not show this trend. Finally, LPIs
were more accurate with finer spatial resolution of the remotely
sensed data at both the pixel and sub-pixel scales. For the PD, MPA,
ED, LSI, and AWMSI derived from the sub-pixel maps, the accuracy
noticeably decreased when the spatial resolution of the remotely
sensed data was coarsened. For the LPI, LD, and PC derived from the
sub-pixel maps, the variations in accuracy with coarse spatial reso-
lution differed with class abundance. Furthermore, as shown by the
error bars in Figs. 2–4, uncertainty existed in the LPIs derived from
the sub-pixel maps, and the uncertainty increased most often with
coarser spatial resolution. The values of the error bars were small
for PD, MPA, ED, LSI, and AWMSI, indicating less uncertainty. For
LPI, LD, and PC, the error bar values were relatively large in certain
circumstances and varied sharply with landscape fragmentation,
class abundance, and coarse spatial resolution.

3.2. Factors that influence LPIs derived from the sub-pixel maps

Although the accuracy of LPIs was improved through the SPM
model, the LPIs derived from the sub-pixel maps did not fully rep-
resent the reference landscape pattern (Figs. 2–4). The objective
function in the SPM model that was used to allocate the sub-
pixels, together with the uncertainty in SPM and the resultant land
cover maps, landscape fragmentation, class abundance, and the
spatial resolution of the remotely sensed data all influenced the
LPIs derived from the sub-pixel maps.

3.2.1. SPM model and the uncertainty in SPM
The limitation of the LPIs derived from the sub-pixel maps in

representing the actual landscape pattern is attributed mainly to
the objective function of the SPM model. Maximizing land cover
spatial dependence in the objective function assumes that sub-
pixels that are close together are more likely to have the same
land cover class type. However, this principle can hardly repre-
sent various real-world landscape patterns. For the pixel-swapping
algorithm, the objective function determines the spatial allocation
of sub-pixels, and only the swapping of sub-pixels, which increases
spatial dependence, is performed in the optimization approach.
Therefore, in the resultant sub-pixel maps, sub-pixels represent-
ing the same land cover class are aggregated into one or a few
patches within each coarse pixel, or aggregated with the sub-pixels
of neighbouring coarse spatial resolution pixels. This approach
implies that isolated sub-pixels of a land cover class seldom exist
within the coarse spatial resolution pixels. This aggregation of
sub-pixels eliminated small-sized patches, which were substituted
with larger aggregated patches (Fig. 1). As a result, the SPM model
decreased the degree of landscape fragmentation by generating

more aggregated landscapes, and the landscape pattern yielded by
the SPM model was not consistent with the reference pattern. For
PD, ED, LSI, AWMSI, and LD, for which lower values indicate more
aggregated landscapes, the values of the LPIs derived from the sub-



Jou
rn

alId
en

tifi
cation

=
EC

O
IN

D
A

rticle
Id

en
tifi

cation
=

759
D

ate:
M

ay
6,2011

Tim
e:

7:17
p

m

1164
X

.Liet
al./EcologicalIndicators

11
(2011)

1160–1170

Fig. 2. Comparison of the class-level LPIs derived from the sub-pixel and hard classification maps. The behaviour of LPIs as a function of the coarse spatial resolution (scaling factor) for p = 0.4, and A1 = 20%, 50%, and 80%. LPIs with
scaling factor = 1 represent the reference landscape pattern of the focal land cover class. Each error bar represents mean ± SD.
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Fig. 3. Comparison of the class-level LPIs derived from the sub-pixel and hard classification maps. The behaviour of LPIs as a function of the coarse spatial resolution (scaling factor) for p = 0.5, and A1 = 20%, 50%, and 80%. LPIs with
scaling factor = 1 represent the reference landscape pattern of the focal land cover class. Each error bar represents mean ± SD.
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Fig. 4. Comparison of the class-level LPIs derived from the sub-pixel and hard classification maps. The behaviour of LPIs as a function of the coarse spatial resolution (scaling factor) for p = 0.55, and A1 = 20%, 50%, and 80%. LPIs
with scaling factor = 1 represent the reference landscape pattern of the focal land cover class. Each error bar represents mean ± SD.
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ixel maps were lower than those of the reference LPIs. For MPA,
PI, and PC, for which higher values indicate more aggregated land-
capes, the values of the LPIs derived from the sub-pixel maps were
igher than those of the reference LPIs (Figs. 2–4).

The LPIs derived from the sub-pixel maps were influenced by the
ncertainty in SPM. As SPM is an under-determined inverse prob-

em, the resultant sub-pixel maps from different or even the same
PM algorithms are probably not identical, although all satisfy the
onstraints of the original class proportions by the coarse resolution
mage (Atkinson, 2009; Boucher, 2009). Because the SPM model
s applied to determine the most likely locations of the fractions
f each land cover class within each coarse pixel, the initialization
tep and spatial optimization approach for allocating the sub-pixels
n the SPM model result in uncertainty in the sub-pixel maps and
esultant LPIs. The uncertainty in the LPIs derived from the sub-
ixel maps is exhibited using error bars in Figs. 2–4. Substantial
ncertainties in the LPIs were most frequently found with coarser
patial resolution of the remotely sensed data. Generally, for the
D, MPA, ED, LSI, and AWMSI derived from the sub-pixel maps, the
ncertainty was low and did not considerably affect their accura-
ies. Considering the influence of uncertainty, the LPI, LD, and PC
erived from the sub-pixel maps for certain class abundances did
ot show appreciable improvement in accuracy over those derived

rom hard classification maps. However, the absolute values of the
rror bars were rather small for these LPIs. Despite its uncertainty,
herefore, the SPM model is practicable in generating land cover

aps for calculating LPIs from the sub-pixel maps. Moreover, the
ncertainty indicates that sufficient repetitions of SPM are needed
o obtain reliable LPIs, with greater uncertainty implying more rep-
titions required.

.2.2. Landscape fragmentation and class abundance
Landscape fragmentation has been broadly applied in many

spects of ecology, including composition (number/size), shape
perimeter/edge), and configuration (degree of connectedness).
he eight LPIs used in this research reflect different aspects of
andscape fragmentation. Among these LPIs, PD and MPA directly
epict the density in number and mean size of patches; ED, LSI, and
WMSI, which are related to edge, are used to characterize patch
hape regularity; LPI is used to characterize domain patch size; and
D and PC are used to characterize configuration. Fragmentation is
efined as the process of increasing the number of patches, decreas-

ng mean patch size, and increasing the total amount of edge;
hus, the SPM model, which aims to maximize spatial land cover
ependence, decreases patch numbers by generating larger-sized
nd regularly shaped patches. The model consequently decreases
he degree of landscape fragmentation compared with the refer-
nce landscape. As a result, the accuracies of PD, MPA, ED, LSI, and
WMSI decreased with the decrease in landscape fragmentation
aused by the SPM model; hence, the sub-pixel maps could not
each the level of accuracy reflected by the reference landscape pat-
ern (Figs. 2–4). Moreover, the degrees of landscape fragmentation
nd accuracies of the PD, MPA, ED, LSI, and AWMSI derived from the
ub-pixel maps decreased gradually when the spatial resolution of
he remotely sensed data was coarsened (Figs. 2–4). The LPI, LD,
nd PC derived from the sub-pixel maps were also affected by the
ecrement in landscape fragmentation. However, their values did
ot vary linearly with the changes in patch number, mean size, and
hape regularity, and they exhibited a different trajectory when the
patial resolution of the remotely sensed data was coarsened.

In addition, the decrement in fragmentation of the actual land-
capes by the SPM model was more evident in more fragmented

andscapes. Therefore, the classification accuracy of the SPM model
nd accuracy of LPIs derived from the sub-pixel maps were higher
n more aggregated landscapes. A visual comparison of the sub-
ixel maps of varying fragmentation (Fig. 1) and the subsequent
s 11 (2011) 1160–1170 1167

LPIs derived from the sub-pixel maps (Figs. 2–4) shows that the SPM
model worked more precisely for more aggregated landscapes.

Class abundance should also be considered when using the SPM
model in improving LPIs. With the increment in class abundance,
the changes in patch number and area were clearly observable, and
fewer and larger area patches of the focal class were generated.
These changes are correspondingly reflected in the classification
maps (Figs. 2–4). For hard classification, higher class abundance of
the focal class enabled the classification of more pixels to that class
and often generated larger patches, as well as leading to obvious
changes in NP, MPA, and AWMSI. For the SPM model, class abun-
dance affected the number of sub-pixels to be aggregated. More
sub-pixels of the focal class were aggregated into larger patches
when class abundance was high, and obvious changes in NP, MPA,
and AWMSI were also observed in the sub-pixel maps. The other
LPIs, which are not used to depict the number and mean size of
patches, exhibited no significant changes with the increment in
class abundance in both the hard classification and sub-pixel maps.

Moreover, the accuracy of LPIs was not always improved
through the SPM model in certain cases of class abundance. PD,
MPA, ED, LSI, and AWMSI were all derived more accurately from
the sub-pixel maps than from the hard classification maps irre-
spective of class abundance. For LPI, LD, and PC, however, the SPM
model did not show extensive advantage in some class abundances
in terms of accuracy and uncertainty (Figs. 2–4). The LPI derived
from the sub-pixel maps remained almost invariant to changes in
coarse spatial resolution when the corresponding patch type occu-
pied the majority of the landscape. This is because almost all the
sub-pixels of the focal class are aggregated despite coarse spatial
resolution. The same tendency can be found in LD, which is highly
correlated with LPI with high class abundance. PC measures the
connectedness of the corresponding patch type. Below a threshold,
PC is sensitive to the aggregation of the focal class and increases
as the sub-pixels of the focal class are gradually aggregated. Above
the threshold, the connectedness is stable and PC becomes robust
to the aggregation.

3.2.3. Spatial resolution of the remotely sensed data
The accuracy of and uncertainty in the LPIs derived from the

sub-pixel maps were also affected by the spatial resolution of the
remotely sensed data, which was represented in this research as the
aggregation factor for the degraded images. Remotely sensed data
with fine spatial resolution are preferable in deriving landscape
patterns at the sub-pixel scale. In SPM, coarser spatial resolution of
the remotely sensed data indicates more varied land cover classes
involved in each coarse pixel. Nevertheless, sub-pixels can only
be allocated within their corresponding coarse pixels, and coarser
spatial resolution indicates a larger area of potential locations for
sub-pixels to be allocated in the resultant sub-pixel maps. This
increases the uncertainty in the sub-pixel maps and decreases the
accuracy of the corresponding LPIs. By contrast, finer spatial reso-
lution can reduce the uncertainty in allocating sub-pixels, reducing
the number of wrongly allocated sub-pixels and generating more
accurate landscape patterns at the sub-pixel scale (Figs. 2–4).

Considering the influencing factors in deriving LPIs from
sub-pixel maps, the objective function of the SPM model and
uncertainty in the result of the sub-pixel maps are intrinsic fac-
tors of SPM. The influence of these factors cannot be eliminated.
Landscape fragmentation and class abundance are inherent in the
focal study area and cannot be disregarded. However, the spa-
tial resolution of the remotely sensed data can be adjusted using
different satellite data. Moreover, with the development and appli-

cation of remote sensing systems, multi-resolution satellite data
have been widely used for regional monitoring, and multi-scale
analyses of landscape pattern are crucial for evaluating landscape
context (Purtauf et al., 2005). The inter-comparison of LPIs derived
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Table 1
Sensitivity (S) of LPIs derived from the hard classification and sub-pixel maps.

Index S (for LPIs
derived from
the hard
classification
maps)

S (for LPIs
derived from
the sub-pixel
maps)

PD −106.394 −82.247
MPA 59.370 38.450
ED −135.852 −91.370
LSI −137.767 −85.692
AWMSI −93.478 −43.582
LPI 5.549 1.387
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LD −11.753 −1.015
PC 26.212 6.482

rom sub-pixel maps of different spatial resolutions is particularly
ignificant.

The inter-comparison of the LPIs derived from the sub-pixel
aps of the same grain size (sub-pixel size) using multi-resolution

atellite data is shown in Fig. 5. The sensitivity of the LPIs derived
rom the sub-pixel maps to changes in coarse spatial resolution (S)
s estimated as follows (O’neill et al., 1996):

= 100
M10 − M3

SD
(2)

here Mx is the mean value of the landscape pattern index for F = x;
D is the standard deviation of LPIs for the set of simulated patterns
ith all class abundance and p ≥ 0.4. As noted in the MRC simula-

ion method that generated various landscape patterns used in this
esearch, the degrees of fragmentation were obtained with p ≥ 0.4
o represent commonly found landscape patterns. Including all p
alues in the computation of SD would over-estimate the variation
ange of LPIs (Saura and Martínez-Millán, 2000). S values allow for
more appropriate and adequate comparison of the sensitivity of

PIs. S represents the percentage of the absolute variation of the
andscape index to changes in coarse spatial resolution relative to
he overall range of variation in the index (as estimated by SD). The
earer S is to 0, the more robust the index is to changes in coarse
patial resolution (from F = 10 to F = 3). Positive S values indicate
hat the index tends to increase with coarse spatial resolution, and
ice versa. The sensitivities of the LPIs derived from the hard classi-
cation and sub-pixel maps to changes in coarse spatial resolution
ere analyzed in this research. Table 1 shows S values for the eight

nalyzed LPIs.
For hard classification methods, coarsening the spatial resolu-

ion of the remotely sensed data (e.g., from F = 3 to F = 10 in Table 1)
ielded larger-sized, more regularly shaped, and fewer patches,
long with more connectivity and less fragmented landscape pat-
erns. For the SPM model, coarser spatial resolution of the remotely
ensed data presented more sub-pixels of the same class to be
ggregated within the area defined by the coarse spatial resolution.
ubsequently, coarsening the spatial resolution of the remotely
ensed data resulted in similar changes in landscape patterns in the
ub-pixel maps as in the hard classification maps (Table 1). The sign
positive or negative) of S shows that the LPIs derived from both the
ard classification and SPM modeled maps had the same trend of
ariation when spatial resolution was changed. PD, ED, LSI, AWMSI,
nd LD tended to decrease with coarser spatial resolution, whereas
PA, LPI, and PC tended to increase. The values of S show that the

PIs derived from both the hard classification and sub-pixel maps
ad similar sensitivity to coarse spatial resolution. LPI, LD, and PC
ere robust to coarse spatial resolution, whereas the other LPIs, in
eneral, were highly sensitive and unsuitable for inter-comparison
cross different coarse spatial resolutions. Greater sensitivity was
eflected by PD, MPA, ED, LSI and AWMSI, which are used to
haracterize patch number, mean size, and shape regularity that
s 11 (2011) 1160–1170 1169

exhibit significant changes caused by the aggregation of landscapes
brought by the SPM model. The accuracies of these sensitive LPIs
clearly decreased with the decrement in landscape fragmentation
caused by the SPM model, especially from coarser spatial resolution
of the remotely sensed data. Consequently, some sensitive LPIs (e.g.,
PD, ED, LSI, and AWMSI) would be under-estimated and some LPIs
(e.g., MPA) would be over-estimated from coarser spatial resolution
images at the sub-pixel scale.

4. Conclusions

This research assessed the derivation of LPIs from sub-pixel
maps through the SPM model, which aims to maximize the spatial
dependence between neighbouring sub-pixels. Using the output
of soft classification, the SPM model transforms fraction images
into a finer-scaled hard classification map, consequently alleviat-
ing the mixed pixel problem and minimizing the influence of grain
size on LPIs quantification which the traditional pixel-based hard
classification methods typically suffer from. The pixel-swapping
algorithm, which can be used without ancillary data and prior infor-
mation, was employed to generate land cover maps from which LPIs
were calculated. Eight LPIs were applied, and the results showed
that the LPIs derived from the sub-pixel maps were, in general,
preferable to those derived from the hard classification maps in
terms of accuracy.

The factors influencing the LPIs derived from the sub-pixel maps
were analyzed. First, insufficient expression of land cover spatial
pattern in the objective function is the intrinsic factor that lim-
its the SPM model in representing landscape spatial patterns. SPM
also generated uncertainty in the derived LPIs. Second, landscape
fragmentation and class abundance affected the values and scaling
behaviours of the LPIs derived from the sub-pixel maps. Most of
the LPIs derived from the sub-pixel maps can be generated more
accurately in less fragmented landscapes, and the LPI, LD, and PC
derived from the sub-pixel maps can approximate those of the ref-
erence landscape patterns when class abundance is high. Finally,
finer spatial resolution of the remotely sensed data yielded more
accurate and less uncertain LPIs with the SPM model.

The inter-comparison of the LPIs derived from the sub-pixel
maps of the same sub-pixel size using multi-resolution satellite
data was also addressed. The LPIs derived from the SPM modeled
maps exhibited the same trend of variation (increase or decrease)
as the LPIs derived from the hard classification maps when the
spatial resolution of the remotely sensed data was changed. PD,
MPA, ED, LSI, and AWMSI were sensitive to the spatial resolu-
tion of the remotely sensed data when derived from land cover
maps using the SPM model, and were consequently unsuitable for
inter-comparison across different coarse spatial resolutions at the
sub-pixel scale. By contrast, LPI, LD, and PC derived from the sub-
pixel maps were robust to the spatial resolution of the remotely
sensed data.

Although this research has analyzed the impacts of the SPM
model on landscape pattern, several other aspects require further
study. First, only a binary landscape was considered in this research.
Because actual landscapes are composed of a variety of land cover
classes, handling multiple land cover classes at the sub-pixel scale is
required. Second, we operated under the assumption that the pro-
portions of land cover classes for each pixel have been obtained
accurately by soft classification. Nevertheless, the error caused
by soft classification will affect SPM, and consequently influence
the LPIs to a certain extent. Studies on the uncertainty propaga-
tion of soft classification in SPM models and LPIs derived from

sub-pixel maps at the sub-pixel scale are significant. Third, the
pixel-swapping algorithm that maximizes the spatial dependence
between neighbouring sub-pixels was adopted. Other SPM algo-
rithms, however, can offer advantages in improving the accuracy
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f LPIs in certain aspects. For example, the HNN algorithm pro-
ides proportions of sub-pixels in the resultant sub-pixel map that
re not completely consistent with the fraction images of soft clas-
ification, an attribute that can potentially reduce uncertainty in
ub-pixel maps and resultant LPIs. Comprehensive studies on LPIs
erivation from sub-pixel maps through SPM models are required
efore recommendations can be made as to which method is best
or application.
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