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Abstract

Fugitive dust deriving from construction sites is a serious local source of particulate matter (PM) that leads to air
pollution in cities undergoing rapid urbanization in China. In spite of this fact, no study has yet been published
relating to prediction of high levels of PM with diameters < 10 lm (PM10) as adjudicated by the Individual Air
Quality Index (IAQI) on fugitive dust from nearby construction sites. To combat this problem, the Construction
Influence Index (Ci) is introduced in this article to improve forecasting models based on three neural network
models (multilayer perceptron, Elman, and support vector machine) in predicting daily PM10 IAQI one day in
advance. To obtain acceptable forecasting accuracy, measured time series data were decomposed into wavelet
representations and wavelet coefficients were predicted. Effectiveness of these forecasters were tested using a
time series recorded between January 1, 2005, and December 31, 2011, at six monitoring stations situated within
the urban area of the city of Wuhan, China. Experimental trials showed that the improved models provided low
root mean square error values and mean absolute error values in comparison to the original models. In addition,
these improved models resulted in higher values of coefficients of determination and AHPC (the accuracy rate of
high PM10 IAQI caused by nearby construction activity) compared to the original models when predicting high
PM10 IAQI levels attributable to fugitive dust from nearby construction sites.
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Introduction

Construction of buildings and infrastructure can pro-
duce significant emissions as a result of activities com-

mon to construction sites. Throughout the construction
period, uncontrolled fugitive dust emissions can present se-
rious environmental, health, and operational problems that
impact both site personnel and nearby communities (Ash-
baugh et al., 2003; Ho et al., 2003; Dorevitch et al., 2006; Kumar
et al., 2012).

An air quality index (AQI) is a quantitative measure used to
uniformly report on the air quality of different constituents
with respect to human health (Ministry of Environmental
Protection, 2012). PM10 (particulate matter with a diameter
< 10 lm) The Individual Air Quality Index (IAQI) is a con-
version of PM10 (Ministry of Environmental Protection, 2012),
one of the primary pollutants afflicting China today (Chan
and Yao, 2008; Ministry of Environmental Protection, 2009–

2011). It is measured at sampling stations on a 0:500 scale. A
PM10 IAQI result of 100 corresponds to the short-term ‘‘PM10

air quality objective’’ established by the Air Pollution Control
Ordinance. The Ministry of Environmental Protection of the
People’s Republic of China classifies PM10 air quality stan-
dards into six major categories with respect to PM10 IAQI
values (Table 1): I (clean), II (good), III (low-level pollution),
IV (mid-level pollution), V (high-level pollution), and VI (se-
rious pollution).

Forecasting models can be used to identify in advance what
regulations should be enforced when an AQI exceeds ac-
ceptable values. This would prevent unnecessary annoyances
and potential health risks to urban inhabitants.

Recently, model forecasting using various artificial neural
networks (ANNs) has been shown to be an effective tool when
planning health warning systems related to air quality and
PM10 pollution (Brunelli et al., 2007). For example, Morabito
and Versaci (2003) have proposed the use of hybrid fuzzy
neural systems for modeling and predicting time series of
pollutant concentration levels in Italy. Similarly, Kukkonen
et al. (2003) compared the performance of five different NN
models for the prediction of PM10 concentrations in Helsinki.
Results obtained showed that NN models performed better
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than linear models. In addition, Jiang et al. (2004) used an
enhanced multilayer perceptron (MLP) network to formulate
API predictions in Shanghai, while Hooyberghs et al. (2005)
described the development of an MLP NN to forecast daily
average PM10 concentrations in urban areas in Belgium one
day in advance.

One main benefit in PM10 prediction is its ability to predict
pollution events or high pollution concentrations so that local
residents or commuters can adjust their activities in response.
Accordingly, a few studies have been published on models
that can forecast high levels of PM10 pollution. For example,
Grivas et al. (2006) used a genetic algorithm optimization
procedure to select input variables to improve MLP network
performance. It was reported to perform well in predicting
high PM10 concentrations in Greece. In addition, Perez and
Reyes (2006) developed an integrated ANN to forecast max-
imum values of daily PM10 concentrations in Santiago, Chile.
Cai et al. (2009) presented methods in forecasting hourly air
pollutant concentrations in Guangzhou, China, using a
backpropagation NN. Paschalidou et al. (2011) used MLP and
radial basis function NN, as well as a principal component
regression analysis to make reliable forecasting of hourly
PM10 concentrations in Cyprus. Wu et al. (2011) considered
dust storms when improving the Elman network in predicting
PM10 API in Wuhan, China. Nejadkoorki and Baroutian
(2012) used the Levenberg–Marquardt method to optimize
MLP, while also incorporating gaseous pollutants to predict
maximum PM10 in Tehran, Iran. Chan and Jian (2013) used
NN to identify key factors (meteorological, traffic, etc.) that
affected air pollution levels in Hangzhou, China. Siwek and
Osowski (2012) applied wavelet transform and NN ensemble
averaging to improve accuracy of daily PM10 concentration
predictions.

While exiting PM10, prediction models have utilized these
and other variables (meteorological, vehicle exhaust, etc.) as

inputs; no one has incorporated fugitive dust from construc-
tion sites. Even though construction related activities are
considered to be important sources of pollution, particulate
sources and how they influence surrounding areas have been
less quantified to date (Kumar et al., 2012).

Wuhan (Fig. 1a) is the capital of Hubei Province located in
central China. The Yangtze River (the third longest river in the
world) meets its largest tributary, Hanshui, at Wuhan, di-
viding the city into three sections: Hankou, Wuchang, and
Hanyang—commonly referred to as the Three Towns of
Wuhan. The population of Wuhan is *8.6 million, and its
total area is *8500 km2. Wuhan is situated within a humid
subtropical monsoon climate and is consequently subject to
hot and humid summers. As well as being the political, eco-
nomic, and cultural center of Hubei Province, Wuhan is one of
the largest junctions of land, water, and air transportation in
China. Accordingly, the city has embarked on a path of rapid
urbanization. Data have been published on the air quality
problem the city has been experiencing in recent years. With
the growing number of construction sites, the contribution
from fugitive dust (having an approximate ratio of 30%) to
overall PM10 concentration is increasing (Zhu et al., 2009; Feng
et al., 2011a; Yang et al., 2011). Fugitive dust from construction
sites has become one of the most significant sources of PM10

pollution in megacities in China (Chan and Yao, 2008). Figure
2 and Table 2 list some information regarding construction
sites surrounding St-2 (one of six PM10 monitoring stations in
Wuhan). Additionally, Table 3 provides the total number of
days PM10 IAQI exceeded 100 between 2003 and 2011 in the
area surrounding St-2. The figures and tables provided clearly
show that the intense processes governing building con-
struction activity cannot be ignored in pollution modeling.

The initial aim of this study was to predict PM10 IAQI one
day in advance using meteorological and construction
pollutant-related parameters taken from the previous day.

Table 1. Daily PM10 Individual Air Quality Index and Air Quality Management in China

PM10 IAQI

Daily PM10

concentration
(lg/m3)

Air quality
classification Health influence

Air quality description
and management

£ 50 £ 50 I (clean) No No action is required.
51–100 50–150 II (good) No No action is required.
101–150 150–250 III (low-level pollution) Minor but aggravating

symptoms in healthy people.
People with respiratory

disease should be cautioned
when participating in
outdoor activities.

151–200 250–350 IV (mid-level pollution) Symptoms start to become
evident in healthy people.

Healthy people are advised to
take appropriate action to
reduce outdoor activities.

201–300 350–420 V (high-level pollution) Patients with heart disease and
pulmonary symptoms are
notably affected. A reduction
in endurance commonly
appears in healthy people
when active outdoors.

Air pollution is severe.
Consequently, the general
public is advised to reduce
physical exertion and
outdoor activities.

> 300 > 420 VI (serious pollution) Healthy people exhibit obvious
and intense symptoms, while
participating in outdoor
activities. Certain diseases
develop prematurely.

The general public is advised
to avoid outdoor activities
altogether.

PM10, particulate matter with a diameter < 10 lm; IAQI, Individual Air Quality Index.
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Three NN-based forecasters (MLP, Elman, and support vector
machine [SVM]) were used. Experimental trials were aimed to
improve existing neural models (Wu et al., 2011) to enhance
prediction accuracy of high PM10 IAQI levels caused by fu-
gitive dust derived from construction sites.

Networks were assembled using a time series recorded
between January 1, 2005, and December 31, 2011, at six
monitoring stations (St-1 to St-6; Fig. 1b) situated around the
city of Wuhan. Model validation was carried out by com-
paring model prediction values to a different set of recorded
data not used in model training. A cross-validation strategy
was used for validation. Both existing and modified models
were tested and compared for performance in achieving a one
day advanced forecast of a high level IAQI event attributable
to nearby construction site fugitive dust.

Data and Methodology

Data preparation

Network training was based on data taken during a 7-year
period between January 1, 2005, and December 31, 2011. Daily

PM10 IAQI data acquired at the six monitoring stations were
made available by the Wuhan Environmental Protection Bu-
reau. Meteorological variables of average daily temperature
(T [�C]), relative humidity (RH, %), wind speed (Ws, m/s),
barometric pressure (P [bar]), rainfall amount (RF, mm), and
sunshine duration (SD, hours) were monitored at a meteoro-
logical station located within the Wuhan Meteorological Bu-
reau. A description of monitoring data from 2005 to 2011 is
provided in Table 4.

FIG. 2. Construction site distribution surrounding St-2.

FIG. 1. Wuhan: (a) map and (b) location of stations.

Table 2. Brief Description of the Construction

Sites Surrounding the St-2 Monitoring Station

Construction
site Area (m2) Distancea (m)

Construction
duration

a 38,160 1570 2009–current
b 54,760 1915 2009–current
c 48,508 1145 2009–current
d 143,250 1314 2009–current
e 37,200 615 2009–current
f 83,450 870 2009–current
g 56,287 445 2005–2007
h 61,864 1153 2007–2009
I 132,400 1010 2006–2009
j 543,800 1495 2005–current
k 118,030 1948 2007–current
l 96,500 1200 2009–2011
m 64,310 1170 2006–current
n 164,500 1990 2005–2008
o 25,510 868 2005–2006
p 221,774 1627 2007–2009

aNumbers in the distance column correspond to the shortest
distances between construction site and St-2.

Table 3. Number of Days when PM10 Individual Air

Quality Index was Over 100 Between 2005
and 2011 as Determined by St-2

2005 2006 2007 2008 2009 2010 2011

27 49 59 62 43 67 49
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In this study, meteorological parameter input values used
in model development corresponded to the actual time for
which the prediction applies in the absence of available data
from numerical weather forecasts.

Information related to construction area and duration was
provided by the Wuhan Urban Construction Archives. Dis-
tances between construction site boundary and PM10 moni-
toring stations were measured using the ArcGIS system.

Methodology

To quantify nearby construction activity influence, this
study consulted certain published literature (Watson and
Chow, 2000; Muleski et al., 2005; Tian et al., 2008a, 2008b;
Zhao et al., 2009; Mensink et al., 2011). The following vari-
ables, such as construction site area (A, m2), distance be-
tween construction site boundaries and PM10 monitoring
stations (D, m), and wind speed (Ws, m/s) were therefore,
introduced.

A sigmoid was adopted to qualify the influence of one
construction site when the corresponding PM10 monitoring
station was located downwind from it:

where A (m2) is the area of the construction site; D (m) is
the distance between construction site boundary and a
specific monitoring station situated downwind from it; and
Ws is wind speed (m/s). Ci is the Construction Influence
Index of construction site i relating to a specific monitoring
station.

When more than one construction site was situated upwind
from a monitoring station, a sigmoid function was applied to
the Construction Influence Index as follows:

where Ci is the Construction Influence Index of n construction
sites to a specific monitoring station.

Neural type networks for prediction

The aim of this study was to improve ANN prediction ac-
curacy by introducing Ci. Three classical types of NNs were
chosen since they individually represent independent ap-
proaches to the paradigm. MLP, one of the best known of
these networks, applies the sigmoidal activation function
(Hornik et al., 1989). SVM is a universal solution that applies
kernel principle analysis with a sophisticated, robust statisti-
cal learning algorithm. Both MLP and SVM use the feedfor-
ward structure of signal processing. The Elman network has a
feedback structure (Elman, 1990) and has proven to perform
well when modeling complex processes related to pollution
prediction (Brunelli et al., 2007). All three networks have
demonstrated good performance when modeling complex
processes related to air pollution formation (Brunelli et al.,
2007; Osowski and Garanty, 2007; Paschalidou et al., 2011).

Accurate predictions are difficult due to high variability. A
solution is to decompose the predicted time series into terms
of lower variability. Since the wavelet application in time se-
ries analysis and prediction has been applied successfully in
the past (Osowski and Garanty, 2007; Siwek et al., 2009; Feng

et al., 2011b), wavelet decomposition of the original PM10

IAQI time series was used for this study. Detailed method-
ology regarding wavelet decomposition of the original signals
has been previously described by Osowski and Garanty
(2007). Figure 3 illustrates results of exemplary five level
wavelet decomposition of real data related to PM10 IAQI from
St-2 in 2005 (the upper curve) obtained by applying Daube-
chies (db4) wavelets implemented on the MATLAB platform.
All signals (the first five levels of wavelet coefficients from D1

to D5 and the coarse approximation A5 on the fifth level) are
illustrated in their original resolutions.

Ci¼

0 If it is has rained in the previous or following day

0 If D > 2000 m or Ws � 0:185 m=s

A · (114:6Ws3� 393:4Ws2þ 538:8Ws� 87:03)
D2 otherwise,

8>><
>>:

(1)

Ci¼

0 If Ws is � 0:185 m=s or it is has rained in the previous or following day
0 If a construction site is not upwind from a monitoring station
Pn
i¼ 1

Ci otherwise,

8>><
>>:

(2)

Table 4. Description of PM10 Individual Air Quality Index Monitoring

and Meteorological Sites Around the Study Area

Site Location Arithmetic mean Median Range

St-1 Residential suburban area 79.2 76 11–498
St-2 East Lake Park 73.7 71 10–448
St-3 Residential area in Hanyang 81.2 78 10–469
St-4 Residential area in Hankou 80.7 76 11–457
St-5 Commercial area in Wuchang 83.7 79 9–449
St-6 Heavy industrial area 86.3 82 10–478
St-M Residential area in Hankou

St-1 to St-6 are six PM10 monitoring sites; St-M is the meteorological station.
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Experiment

To evaluate the effectiveness of Ci, three types of NNs
(MLP, Elman, and SVM) were applied separately. Wavelet
coefficient prediction on each level required the use of one
specific network. An additional network was needed to pre-
dict a coarse approximation of the data. Since five levels of
wavelet coefficients were chosen along with A5 for coarse
approximation on the fifth level, six networks were used al-
together.

Each mode input pattern for each station contained a set of
daily values for prediction of Di (i¼ 1, 2, . . . 5) or A5 from a
specific station. One value was applied to both the current and
subsequent day and where the final value was the specific
PM10 IAQI monitoring station under consideration. There-
fore, each neural mode input pattern had a total of 15 values:

average temperature (T), relative humidity (RH), wind speed
(WS), barometric pressure (P), rainfall amount (RF), sunshine
duration (SD) from St-M, the Construction Influence Index of
n construction sites (Ci), and the PM10 IAQI Di (i¼ 1, 2, . . . 5)
or A5 from specific stations (St-1 to St-6) as illustrated in Fig. 4.

On the basis of these predicted coefficients, the real pre-
diction of PM10 IAQI from specific stations for the following
day is made by simply adding them together as reported in
published literature (Osowski and Garanty, 2007). Equation
(3) shows the recovery process of the original PM10 IAQI
signal:

PM10IAQI¼D1þD2þD3þD4þD5þA5 (3)

The data set used to build the NN database constituted
daily values related to a period between January 1, 2005, and

FIG. 3. Wavelet decomposition of the measured time series x(n) of PM10 IAQI from St-2 in 2005; D1–D5 represent the
detailed coefficients and A5 the coarse approximation of x(n) on the fifth level. PM10, particulate matter with a diameter
< 10 lm; IAQI, Individual Air Quality Index.

FIG. 4. Neural network architecture for St-i
(i = 1, 2,.6). T (average daily temperature);
RH (relative humidity); WS (wind speed); P
(barometric pressure); RF (rainfall amount);
SD (sunshine duration); Di (wavelet coeffi-
cients from level i); A5 (the coarse approxi-
mation on the fifth level); Ci (Influence Index
of construction site); St (station).
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December 31, 2011. Neural model performance was evaluated
by applying a cross-validation strategy by which to test the
effectiveness of the tested model for prediction accuracy. The
entire data set between January 1, 2005, and December 31,
2010, was used as a training set, while the 2011 data set was
shared between the three subsets, using two out of the three
subsets to complete the training set. The remaining subset was
applied as a test set. Accordingly, three different training and
test sets were used to guarantee robust performance, and test
set selection independency attributed for all models that were
developed and tuned. The different training and test sets used
are provided in Table 5.

Data were preprocessed to eliminate instrumental er-
rors. This was accomplished by replacing holes in the es-
tablished time series with values before or after a hole
occurred. In addition, each value in the NN was normal-
ized within the specified range [0, 1], using the following
linear transformation:

X0 ¼ (X�Vmin)=(Vmax�Vmin), (4)

where X0 is the new normalized value; X is the old value; Vmax

is the maximum of the data set under consideration; and Vmin

is the minimum of the data set under consideration. The
normalized value set was used as the NN input.

For experiments pertaining to nonlinear models of predic-
tion, the same structures were used for predicting pollution
and wavelet coefficients. Developed nonlinear network
structures were as follows: 15-15-1 for MLP and 15-24-24-1 for
Elman. They were established after a series of additional in-
troductory trials. Gaussian kernel numbers of the SVM net-
work were automatically adjusted by the learning procedures
applied (Osowski and Garanty, 2007), which was different for
each experiment.

Results and discussion

Trials were carried out with and without the Ci input to
promote training and optimization, as well as to evaluate the
forecasting task for daily PM10 IAQI. Accordingly, the training
set, given the previous description, comprised of a value of 80
months, while the test set comprised of a value of 4 months.

Table 5. Training and Test Sets Used for Cross Validation

2005 2006 . 2010 2011

Jan.–
Apr.

May–
Aug.

Sept.–
Dec.

Jan.–
Apr.

May–
Aug.

Sept.–
Dec.

. Jan.–
Apr.

May–
Aug.

Sept.–
Dec.

Jan.–
Apr.

May–
Aug.

Sept.–
Dec.

Set 1 * * * * * * . * * * * *
Set 2 * * * * * * . * * * * *
Set 3 * * * * * * . * * * * *

Data from four successive months were cyclically used as test sets.
*Dates marked by asterisks were used for network training.

FIG. 5. Prediction of high
level PM10 IAQI attributable
to nearby construction site
activity by applying three
neural networks with and
without Ci input.
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The aim of experimental trials was to establish optimized
architecture for each model. Model performance was evalu-
ated using the following parameters: the correlation coeffi-
cient (r), mean absolute error (MAE), root mean square error
(RMSE), and mean absolute percentage error (MAPE).

Model performance evaluations were extended to include
the prediction of high PM10 IAQI attributable to nearby
construction activity. This task is of particular importance to
administrators since successfully predicting high PM10 val-
ues in a timely manner provides the time to restrict and
confine activities that put the health and welfare of local
residents at risk.

The prediction accuracy rate of high PM10 IAQI attributable
to nearby construction activity (AHPC) was introduced in this
study to evaluate the six models investigated.

AHPC¼ n>100=N>100 · 100%, (5)

where AHPC is the accuracy rate of high PM10 IAQI attrib-
utable to nearby construction activity. n > 100 is the total pre-
dicted number of records from the six stations wherein PM10

IAQI values exceeded 100 (attributable to nearby construction
activity), while N > 100 (with a value of 216 for this study) is the
total number of records from the six stations wherein the PM10

IAQI value exceeded 100 (attributable to nearby construction
activity) in 2011. Prediction accuracy was identified when the
relative error of the prediction value and the record was
< 10%. High PM10 pollution caused by remote sources, such as
dust storms was excluded from this study.

Figure 5 provides a comparison between forecasting
performance of the models with and without the Ci input as
they relate to high PM10 IAQI attributable to construction
activity.

When taking into account Fig. 5 and Table 6, which com-
pare predicted and observed values, correlation coefficient (r)
values and AHPC were higher for the models using the Ci
input than the original models. Improved models also out-
performed original models in other parameters.

Conclusion

The aim of this study was to improve the accuracy of neural
models in forecasting high PM10 air pollutant values in rap-
idly urbanizing cities. The approach used was essentially to
define a warning system as it relates to information regarding
PM10 pollution to provide local residents the capacity to

choose whether to reduce unnecessary risks during outbreaks
of severe pollution. The authors of this study built a pre-
dictive model using three classical neural models (MLP,
Elman, and SVM) and wavelet application. While most
studies have exclusively focused on the use of meteorological
variables, this study also considered construction pollutants
in predicting high PM10 one day in advance of an outbreak.
Prediction tasks were related to daily PM10 IAQI forecasting.
Five statistical indicators (r, MAE, RMSE, MAPE, and AHPC)
were utilized to estimate output results. Improved models
outperformed the original models when carrying out fore-
casting tasks related to high PM10 IAQI attributable to
nearby construction activity. The benefit of the improved
models is their potential in predicting PM10 IAQI parameters
within rapidly urbanizing cities, making this forecaster an
effective tool supporting other systems designed for high
PM10 pollution management. Air pollution is complex in the
Wuhan urban area as it is elsewhere. Therefore, it is neces-
sary to add other key particle source indexes (such as vehicle
exhaust) in the ongoing development of prediction models to
achieve more accuracy in forecasting tasks as it pertains to
local urban areas.
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