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Superresolution Mapping of Remotely Sensed Image
Based on Hopfield Neural Network With
Anisotropic Spatial Dependence Model

Xiaodong Li, Yun Du, Feng Ling, Qi Feng, and Bitao Fu

Abstract—Superresolution mapping (SRM) based on the
Hopfield neural network (HNN) is a technique that produces land
cover maps with a finer spatial resolution than the input land cover
fraction images. In HNN-based SRM, it is assumed that the spatial
dependence of land cover classes is homogeneous. HNN-based
SRM uses an isotropic spatial dependence model and gives equal
weights to neighboring subpixels in the neighborhood system.
However, the spatial dependence directions of different land cover
classes are discarded. In this letter, a revised HNN-based SRM
with anisotropic spatial dependence model (HNNA) is proposed.
The Sobel operator is applied to detect the gradient magnitude
and direction of each fraction image at each coarse-resolution
pixel. The gradient direction is used to determine the direction
of subpixel spatial dependence. The gradient magnitude is used
to determine the weights of neighboring subpixels in the neigh-
borhood system. The HNNA was examined on synthetic images
with artificial shapes, a synthetic IKONOS image, and a real
Landsat multispectral image. Results showed that the HNNA can
generate more accurate superresolution maps than a traditional
HNN model.

Index Terms—Anisotropic spatial dependence model, Hopfield
neural network (HNN), sobel operator, superresolution mapping
(SRM).

1. INTRODUCTION

UPERRESOLUTION land cover mapping (SRM) (or sub-

pixel land cover mapping) is a process used to predict the
spatial distribution of land cover classes within mixed pixels
at a finer spatial resolution than the input data [1]. SRM use
fraction images, which are the result of soft classification of
multi/hyperspectral images, as input, and forms a postprocess-
ing step applied to the fraction images. The SRM models
include a pixel-swapping algorithm [2]-[4], a Hopfield neural
network (HNN) [5]-[9], linear optimization [10], a genetic
algorithm [11], SRM with geostatistical solutions [12], particle-
swarm-optimization-based SRM [13], and SRM with a directly
mapping model [14].

Manuscript received March 20, 2013; revised July 20, 2013 and
September 25, 2013; accepted November 15, 2013. Date of publication
December 16, 2013; date of current version March 11, 2014. This work was
supported in part by the Natural Science Foundation of China under Grant
41301398 and Grant 41001236 and in part by the Chinese Academy of Sciences
through the Strategic Priority Research Program under Grant XDA05050107.

X.Li, Y. Du, E Ling, and Q. Feng are with the Key laboratory of Monitoring
and Estimate for Environment and Disaster of Hubei Province, Institute of
Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077,
China (e-mail: lingf@whigg.ac.cn).

B. Fu is with the School of Hydropower and Information Engineering,
Huazhong University of Science and Technology, Wuhan 430074, China.

Digital Object Identifier 10.1109/LGRS.2013.2291778

The HNN has been widely used, and it demonstrates con-
siderable potential in SRM. It seeks to maximize the spatial
dependence of land cover patches and maintain the land cover
class proportional information derived for remotely sensed
pixels from soft classification in the resulting superresolution
map. All existing HNN-based SRM methods use an isotropic
spatial dependence model that assumes the spatial dependence
of land cover classes is homogeneous and oversimplified if
spatial dependence changes with direction. A 3 x 3-sized
neighborhood system is used in the HNN, giving equal weighs
to neighboring subpixels for a target subpixel. The directions
of subpixel spatial dependence for different land cover classes
are isotropic. Although the HNN has been demonstrated to
provide accurate superresolution land cover representation, it
has several limitations in predicting the interclass boundaries.

Various methods have been proposed to improve the HNN in
reconstructing class boundaries. In addition to the information
from land cover fraction images produced by soft classification,
Nguyen et al. used ancillary data, including fused images
[15] and lidar data [16], to provide supplementary information
at the subpixel level in the HNN to improve the boundaries
representation. Ling et al. [5] used multishifted remotely sensed
images in the HNN to reduce the uncertainty of labeling the
class boundaries. Su et al. [7] combined contouring methods
and the HNN to enhance the SRM accuracy at class boundaries.
However, the spatial dependence model in the HNN was not
revised.

The main drawback of all these existing HNN methods is that
only the isotropic spatial dependence model is used. An impor-
tant way to improve the SRM accuracy at land cover boundaries
is using anisotropic spatial dependence instead of the isotropic
model. Thornton et al. [17] proposed a linear pixel-swapping
algorithm with an anisotropic spatial dependence model to
describe linear features in the SRM. Ling et al. [18] proposed
an SRM model with anisotropic spatial dependence model to
map urban buildings. Although the SRM accuracy levels were
improved by using anisotropic spatial dependence model, the
aforementioned methods can be only applied to specific land
cover classes.

The HNN with isotropic spatial dependence model disre-
gards the direction of spatial dependence of different land cover
classes. In particular, if there is an edge in a coarse-resolution
pixel, the direction of subpixel spatial dependence in this
coarse-resolution pixel should be anisotropic and identical with
the edge direction to preserve the shape of class boundaries.
Aiming to incorporate the spatial dependence direction infor-
mation of different land cover classes in SRM to preserve the
shape of class boundaries, a revised HNN-based SRM with an
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anisotropic spatial dependence model (HNNA) is constructed
in this letter. The HNNA can be applied to land cover fraction
images without using any ancillary data and is not limited to
land cover classes with specific shapes but suitable for various
objects with different shapes. The HNNA was examined on
synthetic images with artificial shapes, a synthetic IKONOS
image, and a real Landsat multispectral image.

II. METHODOLOGY

The HNNA model presented in this letter is founded based
on the structure of the HNN [8]. The HNN predicts the loca-
tion of land cover classes according to the output of the soft
classification. The C' class fraction images (C' is the number
of land cover classes) are represented by C' interconnected
layers, and the neurons within these layers are referred to by
coordinate notation at the subpixel scale. For example, neuron
(h, 1, j) refers to a neuron in row 4 and column j of the subpixel
grid in the land cover class h and has input signal wup;; and
output signal vp,;;. The zoom factor z determines the increase in
spatial resolution from the original satellite image to the high-
resolution (subpixel) land cover map. The relationship between
input and output is defined as

Upij = % [1 + tanh(Aupj)] (D)
where \ is a parameter that determines the steepness of the
function. The HNN is a fully recurrent neural network and runs
until it converges to a stable state. At the stable state, the value
of the energy function of HNN is at a minimum. The output
values of the neurons are binary values at the stable state. If the
output value of the neuron is 1, the subpixel is assigned to that
land cover class. Otherwise, if the output value is 0, the subpixel
does not belong to that class [8].

The energy function of the HNN is expressed as

= _Z Z Z(KlGlhij +K2G2hi5+ K3 Prij+ KaMpij)
ho i g
(2)

where K1, Ky, K3, and K are weighting constants that define
the effects of the corresponding goal functions G1 and G2,
proportion constraint P, and multiclass constraint M to the
energy function, respectively.

The energy function of the HNNA is composed of the same
functions and constraints as the HNN in (2). The difference be-
tween the HNNA and the HNN lays in the calculation of spatial
dependence values in the goal functions. The goal functions of
the HNN and HNNA consider the spatial dependence between
observations. For each neuron (h, 4, j), G1y;; and G2, are the
goal function values, which are determined as

lpi; 1
AGlpiy _ 1 (1 + tanh(Shij — 0.5)A) (vnij — 1) (3)
dvhij 2
dG2pi; 1
hij _ = (14 (—tanh(Shij — 0.5)X)) vpij S
dopij 2

where Sp,;; is the spatial dependence value of neuron (h, 1, j)
and is computed according to the neighborhood system.

In the HNN with an isotropic spatial dependence model, a
3 x 3-sized neighborhood systems where the eight neighboring
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Fig. 1. (a) HNN neighborhood system. (b) and (c) HNNA neighborhood
systems with W = 5 and W = 9. Gray indicates the target neuron, and white
indicates neighboring neurons according to the target neuron.

neurons for the target neuron are given equal weights is used.
Shij in the HNN is computed as

i+1  j+1

Shij: E E Uhbe ©)
b=i—1 c=j—
b#1 c#]

where v is the output of neighboring neuron (A, b, ¢) in the
neighborhood system.

In the HNNA, the neighboring neurons are usually given
different weights. Sy;; in the HNNA is computed as

1 i+(W-1)/2 j+(W-1)/2
a X X

b=i—(W—1)/2 c=j—(W—1)/2
bti c#j

Shij = Uhbe * Whielhij ~ (0)

where W is the neighborhood-system window size, which
is the length of the square side of the neighborhood (see
Fig. 1). whpepnij is the weight of vpye in the calculation of
Shij. € is the normalization constant chosen in order that
22222&1/12)/2 Z?_;W&w}) 1)/2 Whbclhij = L

In the HNNA, the setting of wppc|n:; is based on the gradient
magnitude and direction at pixel (m,n) in y;, where yj, is
the coarse-resolution fraction image of class h, and (m,n) is
the coarse-resolution pixel in yy,, where (h, 1, ) is located in.
In the HNNA, the direction of subpixel spatial dependence in
the neighborhood system centered by (h, i, ) is assumed to be
orthogonal to the gradient direction, and the weights of wppc|ni;
varies with gradient magnitude. The setting of wppc|pi; in the
HNNA neighborhood system includes four steps.

Step 1. Construct a W x W-sized neighborhood system,
with (h, i, 7) as its central neuron.

Step 2. Calculate the gradient magnitude and direc-
tion of pixel (m,n) in y, using the Sobel operator.
The Sobel operator calculates the gradient of the im-
age intensity of yj; at each coarse-resolution pixel and
the rate of change in that direction, by using two
3 x 3 kernels that are convolved with the original image to
calculate the approximations of the derivatives for horizontal
and vertical changes. The Sobel operator gives G,pm, and
Gyhmn Vvalues in the following to show the increase at pixel
(m,n) in intensity in yp across the horizontal and vertical
directions, respectively:

-1 0 1
Gazhmn =|-2 0 2|« Yhmn
-1 0 1
[-1 -2 -1
Gyhmn = 0 0 0 * Yhmn (7)
12 1
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Fig. 2. (a) Subpixel locations in a 3 X 3 coarse-resolution pixel sized area
(z = 3). Subpixels marked in gray indicate class h and subpixels marked in
white indicate other classes, except for class h. (b) 3 X 3 coarse-resolution
pixel sized fraction image of y,. (m,n) is the central coarse-resolution pixel
in (b), and (h, 7, j) is one of the neurons in (m, n). The solid line with an arrow
indicates the gradient direction of pixel (m, n) in yy,, and the dashed line with
arrows indicate the direction of edge in pixel (m,n). (c) Construction of the
neighborhood system centered by (h,i,5) in the HNNA (W = 9). Neuron
marked in gray indicates the neuron (h,%,j), and neurons marked in white
indicate the neighboring neurons. The dotted line indicates the axis of spatial
dependence direction in the neighborhood system.

where ynmn 1S the 3 x 3 pixel-sized subblock in y; with
pixel (m,n) as its central pixel. The asterisk (x) denotes the
2-D convolution operation. The gradient magnitude G,y and
gradient direction Oy, at pixel (m,n) in y,, are calculated
according to the following:

Ghmn = Gihmn + G;hmn ®)
Opmn = atan (giZZZ) . )

Step 3. Determine the direction of subpixel spatial depen-
dence. The direction of subpixel spatial dependence in the
HNNA neighborhood system centered by (h, 4, j) is assumed to
be identical with the edge direction that passes through the pixel
(m,n), which is orthogonal to the gradient direction indicating
the direction of the largest possible increase from low fraction
to high fraction in yy, [see Fig. 2(a) and (b)]. The axis of spatial
dependence direction in the neighborhood system centered by
(h,1i,7), which passes across the center of the target neuron
(h,1,7), is then defined [see Fig. 2(c)].

Step 4. Set wppelpi; in the HNNA neighborhood system
according to an exponent decay function. The values of
Whpelhi; are decreased with the distance between the center of
the neighboring neuron and the axis line as

(70‘5><Ghmn><dibc/o-2) (10)

Whbe|hij = €
where djp. is the Euclidian distance between neuron (1, b, ¢) and
the main axis line in the HNNA neighborhood system [see
Fig. 2(c)]. o isanonlinear parameter. In (10), the gradient magni-
tude Gy is multiplied in the exponential part. Theoretically,
it is more probable that there is an edge passing through pixel
(m,n) in y; when Gp,,,, is high; in this case, the weights
of neighboring neurons vary sharply with dj,;., and the class
boundaries are expected to be constructed well due to the
anisotropic spatial dependence. In contrast, there is probably a
uniform intensity region in y; when Gp,.,,,, = 0; in this case, an
isotropic spatial dependence is assigned for class h. The figures
of weights in the neighborhood with variations of different
gradient orientations and magnitude levels are shown in Fig. 3.

The proportion constraint FP,;; of the HNNA is the same
as the HNN and aims to retain the pixel class proportion
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Fig. 3. Normalized weights of wppc|ns; in the neighborhood system of the
HNNA with the variation of gradient direction and magnitude of pixel (m, n)
in y,. The window size W = 9 and the nonlinear parameter o = 2.

output from soft classification. This was achieved by adding
in the constraint that the total output from the set of neurons
representing each coarse-resolution image pixel should be equal
to the predicted class proportion for that pixel, i.e.,

APy _ 1
222

mz+z—1nz+z-1

Z Z (1—|—tanh(vhde—0.5))\)—ahmn

e=nz
where a o,y s the proportion of class h at pixel (m, n). (b
The multiclass constraint value Mj;; of the HNNA is the
same as HNN, aiming to make the sum of classes at the position
(i,j) tobe equal to 1, i.e.,

C
dMp;;
Sh opii | — 1.

dvhij d=mz

12)

III. EXPERIMENTS AND RESULT ANALYSIS

1) Experiment I: Synthetic categorical images derived from
three artificial shapes were applied as the reference map in this
experiment. Three simulated artificial images, including shapes
of “x”, “annulus,” and “triangle” with two classes representing
the shape and the background were considered. Each image
contains 120 x 120 pixels. The zoom factors z was set as
6, 10, and 15, respectively. The reference map was degraded
according to zoom factors z to simulate the coarse-resolution
fraction images, in order to avoid error introduced by soft clas-
sification. The corresponding fraction images were considered
as the results generated by soft classification and were used as
the inputs of the HNN and the HNNA. The performance of the
HNNA was compared with the HNN and hard classification
(HC), which assigns the coarse-resolution pixel to the class that
occupies the majority of the area in that pixel. The weighting
constants K, Ko, K3, and K, in the HNN and HNNA were
all set to 1. The steepness parameter A in the HNN and HNNA
was set as 100. These parameters were set empirically because
there is no single rule to determine the optimal set of parameters
[51-[91, [15], [16]. The neighborhood window size W in the
HNNA was set as 3, 5, 7, and 9, respectively, to show the influ-
ence of W on the classification map. The nonlinear parameter
o in the HNNA was set as 2 through many trials (o ranging
from 1 to 3 can generate similar results). The accuracy values
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Fig. 4. Classification maps produced by the HC, HNN, and HNNA with the highest kappa value at different zoom factors for synthetic images.

TABLE 1
ACCURACY OF KAPPA K AND F-MEASURE F' FOR HC,
HNN, AND HNNA FOR SYNTHETIC IMAGES

z HC  HNN HINNA
w=3  Ww=s W=7  W=9
¢ K 08361 09843 09850 09845 09863 09852
F 08736 09883 09888 009884 0.9898 0.9890
. 10 K 07830 09626 09673 09682 09647 09659
F 08452 09721 09755 09762 09736 09745
s K 07317 09108 09183 09512 09453 0.9444
F 07894 09333 09389 09635 09590 0.9583
¢ K 08787 09934 09955 09944 09905 09867
B F 09076 09910 09966 0.9957 09928 0.9908
é o K 07706 09851 09840 09880 0.9859 0.9820
£ F 08248 09877 09878 09909 0.9893  0.9883
s K 06519 09415 09285 0959 09678  0.9696
F 07247 09554 09377 09687 09755 0.9768
¢ K 08797 09904 09932 09904 0.9895 0.9900
F 09098 09919 09949 09929 09922 0.9926
éﬂ o K 07738 09592 09642 09713 09734 09712
g F 08330 09696 09733 0978 09802 09785
s K 06384 08304 08152 09049 09301 09367
F 07233 08734 0.8619 09290 0.9478 0.9527

were assessed using a kappa coefficient, which is used to assess
the map-level accuracy and F-measure that is used to assess
categorical-level accuracy [19]. F-measure was used to assess
the accuracy of the three objects (which are “x”, “annulus,” and
“triangle” that are marked in black in Fig. 4). Both kappa and
F-measure values were measured at the spatial resolution that
was the same as the fine-resolution pixel (subpixel). All models
were tested on an Intel Core 2 Processor, with 2.66-GHz Duo
CPU and 1.98-GB RAM using Matlab version 7.3. The running
time was 14 min for the HNN and 21 min for the HNNA (shape
of “x”, z = 6; W = 7 for the HNNA).

Table I gives the accuracy values of HC, HNN, and
HNNA. First, the performance of the HNNA was affected by
the neighborhood window size W. In most cases, the kappa and
F-measure values for the HNNA were high when 1 ranged from
51t0 9. When W = 3, the neighborhood system was too small,
and the HNNA generated similar classification maps as those
produced by the HNN. Second, the zoom factor played an im-
portant role in the accuracy values. The kappa and F'-measure
values for different methods decreased when the zoom factor
increased. This is because, when the zoom factor increases,
the number of unknown variables in the SRM increases, and the
SRM problem is strongly underdetermined [20]. Finally, the
kappa and F-measure values for HC were lower than those for
the HNN and HNNA at different zoom factors. This is because
HC generated classification maps at the pixel scale, whereas the
HNN and HNNA generated classification maps at the subpixel
scale. In addition, the highest kappa and F'-measure values for

the HNNA were not lower than those for the HNN, particularly
when z = 15. Therefore, the improvement of accuracy values
for the HNNA was more obvious when the spatial resolution of
remotely sensed image pixels was coarsen.

Fig. 4 shows the classification maps produced by HC, HNN,
and HNNA with the highest kappa value at different zoom
factors. First, HC generated classification maps with jagged
and rough boundaries at different zoom factors because each
mixed pixel was assigned to one land cover class. By contrast,
the classification maps generated by the HNN and the HNNA
matched better with the reference map. Second, the difference
between classification maps produced by the HNN and the
HNNA varied with the zoom factor. When z = 6, both HNN
and HNNA generated classification maps that were similar with
the reference map. The classification map became inaccurate
when z increased. The differences between classification maps
produces by the HNN and HNNA were more obvious when
z = 15. In classification maps produced by the HNN, the linear
boundaries were jagged and not straight in image “x,” the
boundaries were not smoothed in image “annulus,” and the
linear patch in the bottom part of “triangle” was separated and
unsmoothed. By contrast, in classification maps produced by
the HNNA, the linear boundaries were straight in image “x,”
and the boundaries were smoothed in image “annulus,” and the
linear patch in the bottom part of “triangle” was connected.

2) Experiment 2: A subset of the IKONOS image taken
over at Dujiangyan, Sichuan Province, China, was adopted to
test the proposed model on multiclass scenarios. A part of the
panchromatic image with 240 x 240 pixels was selected and
manually digitized as the reference map with five land cover
classes of different farmlands in it. The reference map was
degraded according to zoom factor (z = 10) to simulate the
coarse-resolution land cover fraction images. In the HNN and
HNNA, the weighting constants K, K», K3, and K, were all
set to 1, and the steepness parameter A was set as 100. The
parameters in the HNNA were as follows: W =7 and 0 = 2.
The running time was 158 min for the HNN and 252 min for
the HNNA.

Fig. 5 shows the classification maps generated by different
methods using the IKONOS image. The class boundaries were
serrated in the classification map produced by HC and not
smoothed in the classification map produced by the HNN.
By contrast, the classification map produced by the HNNA
matched better with the reference map, and class boundaries
were straighter and smoother. Quantitative analysis shows that
the kappa value for HC was 0.7552. The kappa value increased
from 0.9350 for the HNN to 0.9451 for the HNNA.

3) Experiment 3: A subset of Landsat ETM+ image ac-
quired on July 18, 2005 taken over at the Brazilian Amazon
Basin was adopted to test the proposed model on real multispec-
tral remotely sensed image. The subset of Landsat ETM+ image
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Fig. 5. (a) IKONOS reference map of different farmlands and the classifica-
tion maps produced by (b) HC, (c) HNN, and (d) HNNA.
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Fig. 6. (a) Landsat reference map of vegetation and different impervious

surfaces and the classification maps produced by (b) HC, (c) HNN, and
(d) HNNA.

used for analysis includes the bands 1, 2, 3, 4, 5, and 7 and
360 x 360 pixels. The coarse-resolution multispectral image
was produced by averaging the digital number values of the
original Landsat ETM+ image according to the zoom factor
(z = 15). The original Landsat ETM+ image was manually
digitized as the reference map with four land cover classes
of vegetation and different impervious surfaces in it [see
Fig. 6(a)]. A maximum-likelihood classifier was used directly
on the coarse-resolution multispectral image to generate the HC
map. The land cover fraction images as the HNN and HNNA
input were produced by spectral unmixing using the multiple
endmember spectral mixture analysis model. The average root-
mean-square error of the generated fraction images [21] was
0.1976. The model parameters for the HNN and the HNNA
were set the same as in experiment 2. The running time was
312 min for the HNN and 525 min for the HNNA.

Fig. 6 shows the classification maps generated by different
methods using the Landsat image. Similar to the results of the
IKONOS image, the classification map generated by HC had
jagged boundaries, whereas the classification maps generated
by the HNN and HNNA had smoother boundaries. There were
less granularity effects and less serrated boundaries in the
HNNA result than in the HNN result. The kappa value for
the HNNA was 0.8466, higher than that of 0.7722 for HC and
0.8362 for the HNN.

IV. CONCLUSION

In this letter, a HNN model with anisotropic spatial depen-
dence model has been proposed to preserve class boundaries.
Experiments showed that the classification maps produced by
the HNNA matched better with the reference map compared
with those produced by the HNN. The advantage of the HNNA
was more obvious when the zoom factor was large. The kappa
value was improved by the HNNA. The HNNA is sensitive to
the neighborhood window size. In particular, for the images
analyzed, the window size should be set larger than 3 because
the HNNA produces classification maps that are similar with
those produced by the HNN when the window size is small.
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Automatic estimation of the optimal values of the model pa-
rameters in the HNNA should be studied in the future.
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