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Abstract—Superresolution land cover mapping (SRM) is a
technique for generating land cover maps with a finer spatial
resolution than the input image. In general, either the original
multispectral (MS) images or the spectral unmixing results of
the MS image are used as input for SRM models. Panchromatic
(PAN) images are often captured together with MS images by
many remote sensors and provide more spatial information due
to their higher spatial resolution compared with the MS image.
In this paper, a spatially adaptive spatial–spectral managed SRM
model (SA_SSMSRM) that incorporates both MS and PAN images
is proposed. SA_SSMSRM aims to better smooth homogeneous
regions of objects (which represent a territory within which there
is a uniformity in terms of land cover class) and preserve land
cover class boundaries simultaneously by using the PAN image
pixel photometric distance (i.e., gray-level distance or pixel value
difference). Homogeneous regions in the PAN images are usually
characterized by the photometric (pixel value) similarity, whereas
class boundaries are usually characterized by photometric dissim-
ilarity. The SA_SSMSRM smoothing parameter, which controls
the contribution of the prior term (which encodes prior knowledge
about land cover spatial patterns), is designed to be spatially
adaptive, with its value decreasing if the photometric similarity
of neighboring PAN image pixels decreases. SA_SSMSRM was
examined on high-spatial-resolution QuickBird images, IKONOS
images, and Advanced Land Observing Satellite (ALOS) images
with both MS and PAN data. Results showed that the proposed
SA_SSMSRM can generate more accurate superresolution maps
than other SRM models.

Index Terms—Panchromatic (PAN) image, photometric dis-
tance, smoothing parameter, spatially adaptive, superresolution
land cover mapping (SRM).

I. INTRODUCTION

SUPERRESOLUTION land cover mapping (SRM) (or sub-
pixel land cover mapping) is a technique used for gener-

ating land cover maps with a finer spatial resolution than the
input data [1], [2]. This technique has been used for land cover

Manuscript received March 26, 2012; revised January 29, 2013 and April 11,
2013; accepted May 28, 2013. Date of publication July 4, 2013; date of current
version February 27, 2014. This work was supported in part by the National
Basic Research Program (973 Program) of China under Grant 2013cb733205
and in part by the Natural Science Foundation of Hubei Province under Grant
2012FFB07101.

The authors are with the Key Laboratory of Monitoring and Estimate for
Environment and Disaster of Hubei Province, Institute of Geodesy and Geo-
physics, Chinese Academy of Sciences, Wuhan 430077, China (e-mail: lingf@
whigg.ac.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2013.2266345

mapping [3], [4], waterline mapping [5], [6], urban building
mapping [7], urban tree mapping [8], subpixel-scale land cover
change mapping [9], and the improvement of landscape pattern
index accuracy [10]. One type of SRM algorithms (including
the pixel swapping algorithm (PSA) [10]–[12], Hopfield neural
networks [3], [13], [14], linear optimization [15], spatial attrac-
tion model [16]–[19], genetic algorithm [20], particle swarm
optimization [21], and interpolation-based SRM [22]) uses
fraction images (which are the result of the spectral unmixing
of a multispectral (MS) image) as the input. Another type of
SRM algorithms (called spatial–spectral managed SRM (SSM-
SRM) and including Markov-random-field-based SRM [23],
[24], SRM with constrained linear spectral unmixing (CLSU)
model [25], and supervised fuzzy c-means based SRM [26])
does not use fraction images as the input and can be applied
directly to remotely sensed images [23]–[26].

The MS image pixels are inputted directly or indirectly (the
indirect input is the fraction images which are generated by
spectral unmixing and indicate the proportions of each land
cover class within each pixel) into an SRM model. SRM is
formulated as an ill-posed problem that reconstructs a fine-
spatial-resolution land cover map from an MS image or a set
of class fraction images with a coarse spatial resolution, and
the SRM has a limit to the spatial detail and accuracy of the re-
sultant superresolution (SR) land cover map. An effective way
to improve the SRM accuracy is using ancillary data in addition
to the MS image. The ancillary data used for an SRM include
the digital elevation model (DEM) [6], vector boundaries [27],
multiple subpixel shifted remotely sensed images [13], and light
detection and ranging (LIDAR) data [28].

Among the several MS remote sensors such as the Quick-
Bird, IKONOS, Satellite pour l’Observation de la Terre
(SPOT)-5, and Landsat Enhanced Thematic Mapper Plus, a
panchromatic (PAN) and an MS image are often captured
together. The PAN image provides more spatial information
due to its higher spatial resolution compared with the MS
image. The PAN image can be utilized to identify homogeneous
regions of objects which represent a territory within which
there is a uniformity in terms of land cover class and class
boundaries [29], [30]. In a PAN image, homogeneous regions
are characterized by photometric similarity, and class bound-
aries are characterized by photometric dissimilarity. However,
in previous studies, many SRM models (such as the Hopfield
neural network-based SRM [31], [32] and Markov-random-
field-based SRM [8]) only used the PAN image as the spectral
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constraint to preserve the observed pixel spectrums in the
synthetic image pixels created by an SR land cover map, and the
information of the photometric similarity of neighboring PAN
image pixels was not utilized.

In this paper, an SSMSRM model that incorporates both
MS and PAN images is proposed. SSMSRM can be ap-
plied directly to the remotely sensed images. The proposed
SSMSRM contains three parts: a prior term (or spatial term),
a spectral term, and a smoothing parameter. The prior term
encodes prior knowledge about land cover spatial patterns. The
spectral term aims to minimize the difference in the spectral
value between the synthetic MS (or PAN) image pixels and the
observed MS (or PAN) image pixels. The smoothing parameter
is used to control the contribution of the prior term.

The appropriate setting of the smoothing parameter is es-
sential to generate the SR map with high accuracy. Generally,
SSMSRM adopts a fixed smoothing parameter regardless that
a subpixel is on a class boundary or within a homogeneous
region. When a subpixel is located in a homogeneous region,
a high value of the smoothing parameter should be applied to
remove speckle artifacts. When a subpixel is located on the
class boundary, a low value of the smoothing parameter should
be applied to avoid oversmoothing. In this paper, a spatially
adaptive smoothing parameter in SSMSRM is assigned to
smooth the homogeneous region and preserve the class bound-
ary simultaneously. A photometric distance (i.e., gray-level
distance or pixel value difference) decay function is designed to
decrease the smoothing parameter values for subpixels whose
corresponding PAN image pixel values are dissimilar so that
SSMSRM can simultaneously smooth the homogeneous re-
gions and preserve class boundaries in an SR map.

For SSMSRM with a fixed smoothing parameter, the optimal
smoothing parameter is often obtained experimentally using
a set of trials on a land cover image, and this process is
time consuming [25], [26]. There are theoretical methods for
searching the optimal fixed value or spatially adaptive values
for the smoothing parameter in Markov-random-field-based
SRM [24], [33]. However, these methods are based on the
energy balance analysis theory and thus complex. A simple
method to optimize the smoothing parameter is desired. The
optimization of the smoothing parameter in SSMSRM is af-
fected by the data ranges of both prior and spectral terms
[34]. In order to alleviate the effects of data ranges on the
optimization of the smoothing parameter, the prior and spec-
tral terms are divided by two adaptive coefficients which are
calculated according to the statistical characters of the data
ranges of both terms. This approach can simplify the process of
optimization of the spatially adaptive smoothing parameter in
SSMSRM.

In this paper, a spatially adaptive SSMSRM (SA_SSMSRM)
model was proposed and was performed on high-spatial-
resolution QuickBird images, IKONOS images, and ALOS im-
ages with both MS and PAN data. The remainder of this paper
is organized as follows. Section II introduces the SSMSRM
model. The SA_SSMSRM model is developed in Section III.
Section IV presents the model optimization. Section V ex-
amines the performance of SA_SSMSRM against other SRM
models. Conclusions are provided in Section VI.

II. SSMSRM MODEL

A. SSMSRM Model Objective Function

Suppose that the MS image is Y with spatial resolution RY

and Y contains b bands, with each band containing N pixels.
The PAN image is Z with spatial resolution RZ. The output of
SRM is an SR land cover map X with spatial resolution RX,
and the SR map contains c land cover classes. The scale factor,
which allows to generate land cover maps of different spatial
resolutions for a given input image, is an input parameter of
SRM. The scale factor between an MS pixel and a subpixel
is defined as FYX (FYX = RY/RX), and each MS pixel is
divided into F 2

YX subpixels. The scale factor between a PAN
pixel and a subpixel is defined as FZX (FZX = RZ/RX), and
each PAN pixel is divided into F 2

ZX subpixels.
The SSMSRM objective function E is written as [25]

E = λ · Ep + Es (1)

where Ep is the prior term that encodes prior knowledge about
land cover spatial patterns; Es is the spectral term and the pixel
matching term, and it is used to describe the degree of match
between the observed image pixel spectrums and the synthetic
image pixel spectrums created by an SR land cover map. λ is
the smoothing parameter that controls the contribution of Ep.

B. Prior Term

Prior term Ep in SSMSRM is used to describe the degree of
match between the SR land cover map and a prior spatial pattern
model. Based on the assumption that spatially proximate obser-
vations of a given property are more similar than that of more
distant observations, the goal of SRM is to maximize the spatial
correlation of neighboring subpixels in this paper [2], [12], [15].
The prior term for the subpixel k in MS pixel i, called ai,k, is
computed as

Ep (c(ai,k)) =
∑

l∈N(ai,k)

w(ai,k, al) · δ (c(ai,k), c(al)) . (2)

N(ai,k) is a symmetric neighborhood that includes all sub-
pixels inside a square window (the window size, which is the
length of the square side of the neighborhood, is W ) whose
center is ai,k (ai,k itself is not included in the window). c(ai,k)
and c(al) are the land cover class labels for subpixel ai,k and
subpixel al (l ∈ N(ai,k)). δ(c(ai,k), c(al)) is defined as

δ (c(ai,k), c(al)) =

{
−1 c(al) = c(ai,k)
0 c(al) �= c(ai,k).

(3)

The prior term prefers a solution of SRM that reduces the
occurrence of subpixels with different class labels in N(ai,k).
w(ai,k, al) is the weight for a neighborhood subpixel al calcu-
lated through a geometric distance decay function [35] and is
often set to be inversely proportional to the geometric distance
dg(ai,k, al) (usually the Euclidean distance that characterizes
the spatial closeness of subpixels) between ai,k and al [8]

w(ai,k, al) =
1

dg(ai,k, al)
. (4)
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C. Spectral Term

It is intended that the SSMSRM model can be directly
applied to remotely sensed images [2], [23], [25], [26]. The
spectral term Es aims to match the observed pixel spectrums in
the synthetic image pixels created by the SR land cover map. Es

can be obtained by a variety of methods, including the Gaussian
maximal likelihood method [8], [23], [24], [33], the least square
error method [25], and the fuzzy c-means method [26]. In this
paper, the least square error method was utilized, which aims
to minimize the spectral value difference between the synthetic
pixels and the observed pixels based on the least square error.
Unlike the reported least square error method that only includes
the data from MS images in Es [25], the proposed method
incorporates the data from both MS and PAN images in Es.

Let μi be a b× 1 synthetic coarse pixel column vector of
image Y. Assume SMS to be the MS signature matrix

SMS =

⎡
⎢⎣
SMS(B1,C1) · · · SMS(B1,Cc)

SMS(B2,C1) · · · SMS(B2,Cc)

· · · · · · · · ·
SMS(Bb,C1) · · · SMS(Bb,Cc)

⎤
⎥⎦ (5)

where SMS(Bb,Cc) denotes the spectral signature of the cth
land cover class in the bth band in the MS image. Assume
that PMS,i = (P1, P2, . . . , Pc)

T (where T denotes the vector
transposition) is a c× 1 abundance column vector associated
with μi, where P1, P2, . . . , Pc represents the abundances of
land cover classes in μi. Assuming that the spectra of subpixels
are linearly combined, the synthetic MS pixel vector μi can be
expressed as

μi = SMS × PMS,i. (6)

Assume that the observed MS pixel vector is yi. Using the least
square error to describe the spectral value difference [25], the
MS spectral term Es

MS for the subpixel ai,k is then written as

Es
MS (c(ai,k)) = (yi − μi)

T (yi − μi). (7)

Likewise, the synthetic PAN pixel value vj is expressed as

vj = SPAN × P PAN,j (8)

where P PAN,j is a c× 1 abundance column vector associated
with vj and SPAN is the PAN spectral signature vector formu-
lated as

SPAN = [SPAN(C1), . . . , SPAN(Cc)] (9)

where SPAN(Cc) denotes the spectral signature of the cth land
cover class in the PAN image. Assume that the observed PAN
pixel value is zj . The PAN spectral term Es

PAN for the subpixel
aj,k is written as

Es
PAN (c(aj,k)) = (zj − vj)

2. (10)

Based on (7) and (10), the spectral term for the subpixel ai,k
is written as

Es (c(ai,k)) = Es
MS (c(ai,k)) + Es

PAN (c(aj,k)) . (11)

III. SA_SSMSRM

A. Determination of Spatially Adaptive Smoothing Parameter

Using a fixed smoothing parameter usually promotes so-
lutions in which adjacent pixels are likely to belong to the
same class in spatial–spectral managed image classification
and segmentation [36], [37]. Similarly, SSMSRM with a fixed
smoothing parameter promotes SR maps with smooth spatial
patterns. For SSMSRM, on the one hand, a high value of the
smoothing parameter is required to remove speckle artifacts and
generate high-accuracy homogeneous regions in the SR map.
On the other hand, a low value of the smoothing parameter
is required to preserve land cover class boundaries. In the
PAN image, homogeneous regions are usually characterized
by photometric similarity, and class boundaries are usually
characterized by photometric dissimilarity. The photometric
distance between PAN pixels, which characterizes the similarity
of the corresponding neighboring subpixel resembling the cen-
tral subpixel, is utilized to set appropriate smoothing parameter
values for different neighboring subpixels.

As each PAN image pixel is divided into several subpixels
according to the scale factor, the similarity of subpixels, which
are located in the same PAN pixel, cannot be distinguished
by the PAN pixel value. The PAN image pixels need to be
processed to the subpixel scale so that the spatial resolution of
the PAN image matches the fine-resolution land cover map. Nu-
merous interpolation algorithms can be applied for this purpose.
In this paper, three algorithms (nearest-neighbor interpolation,
bilinear interpolation, and bicubic interpolation) are tried. In
the nearest-neighbor interpolation, the nearby PAN pixel values
are used as the interpolated PAN pixel values. In bilinear and
bicubic interpolations, the average of 4 (2 × 2) surrounding
PAN pixel values and the average of 16 (4 × 4) surrounding
PAN pixel values are used for the interpolated PAN pixel values
[38]. The nearest-neighbor interpolated images are discontinu-
ous in gray values, whereas the bilinear and bicubic interpo-
lated images are often smoother and have fewer interpolation
artifacts.

One assumption on the spatially adaptive smoothing param-
eter is that smaller photometric distance (similar pixel value)
between interpolated PAN pixels indicates higher probability
of the subpixel labels being in homogeneous regions and
larger photometric distance (dissimilar pixel value) between
interpolated PAN pixels indicates higher probability of the
subpixel labels being on class boundaries. Assume that g(ai,k)
and g(al) are the pixel values in the interpolated PAN image
corresponding to subpixels ai,k and al. dp(g(ai,k), g(al)) is the
photometric distance between g(ai,k) and g(al) and can be set
as the absolute difference of the interpolated PAN pixel values
(|g(ai,k)− g(al)|). For a smaller value of dp(g(ai,k), g(al)),
al needs to be assigned with the same class label as c(ai,k)
to smooth the region allocated by al and ai,k in the SRM. In
contrast, for a larger value of dp(g(ai,k), g(al)), al needs to be
assigned with a class label different from c(ai,k) to reconstruct
the class boundary in the region allocated by al and ai,k.

In this paper, the spatially adaptive smoothing parameter
λ∗ is introduced, and the Gaussian photometric distance de-
cay function is used to measure the smoothing parameter
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Fig. 1. Curves of the Gaussian photometric distance decay function values
against the nonlinear parameter σ in SA_SSMSRM.

value λ∗(ai,k, al) based on the photometric distance dp(g(ai,k),
g(al))

λ∗(ai,k, al) = λ0 · e−0.5·(dp(g(ai,k),g(al))/σ)
2

(12)

where λ0 is the smoothing parameter value in the case that the
interpolated PAN image pixel value of a subpixel equals to that
of the central subpixel. σ is a nonlinear parameter.

Fig. 1 shows the curves of the Gaussian photometric distance
decay function values against the nonlinear parameter σ in
SA_SSMSRM. When σ is small, the smoothing parameters
for the subpixels associated with larger interpolated PAN pixel
photometric distances decrease drastically. When σ is high,
the smoothing parameters for the subpixels associated with
different interpolated PAN pixel photometric distances are ap-
proximate. For an extremely large value of σ, the smoothing pa-
rameters for all subpixels are almost equal, and SA_SSMSRM
and SSMSRM which uses a fixed smoothing parameter will
produce similar SR maps.

The prior term and the smoothing parameter are multiplied to
play a combined role in the labeling of subpixels in SSMSRM,
according to (1). Fig. 2 shows the combined weights of the prior
term and the smoothing parameter for subpixels in a neighbor-
hood system in an ordinary SSMSRM (O_SSMSRM) with a
fixed smoothing parameter and SA_SSMSRM, according to

O_SSMSRM : λ · Ep (c(ai,k))

= λ ·
∑

l∈N(ai,k)

δ (c(ai,k), c(al))

dg (ai,k, al)
(13)

SA_SSMSRM : λ∗ · Ep (c(ai,k))

= λ0 ·
∑

l∈N(ai,k)

e−0.5·(dp(g(ai,k),g(al))/σ)
2 · δ (c(ai,k), c(al))

dg (ai,k, al)
.

(14)

Fig. 2(a) shows that the target subpixel is located between
class boundaries. For O_SSMSRM, the combined weights

Fig. 2. (a) Central subpixel (in the square frame) in the interpolated PAN
image. (b) Combined weights for the neighborhoods with centered target
subpixel in SSMSRM with a fixed smoothing parameter. (c) Combined weights
for the neighborhoods with centered target subpixel in SA_SSMSRM.

for neighboring subpixels follow the geometric distance de-
cay function measured by 1/dg(ai,k, al), indicating that the
combined weights are suppressed as the geometric distance
increases. The local variation of pixel values, an indicator of
class boundaries in the PAN image, is ignored. Consequently,
the class boundary may probably be smoothed in the finalized
SR map. By contrast, the photometric similarity of the inter-
polated PAN image pixels is considered in SA_SSMSRM. The
combined weights for the neighboring subpixels whose pixel
values are dissimilar to that of the target subpixel are suppressed
(14). In this way, the target subpixel is more likely to be labeled
as a class similar to the subpixel labels located on the right
side of Fig. 2(a), and more likely, the class boundaries can be
preserved in the finalized SR map.

The adoption of the spatially adaptive smoothing parame-
ter in SSMSRM is similar to the bilateral filtering used in
image processing [39], [40]. SA_SSMSRM and the bilateral
filtering have similar aims—to smooth homogeneous regions
and preserve class boundaries. The difference is that bilateral
filtering is used for generating gray or color images, whereas
SA_SSMSRM is used for generating land cover maps. For
bilateral filtering, the homogeneous region is represented as
consecutive signal values in gray or color images. For SRM,
the homogeneous region is represented as a territory within
which there is a uniformity in terms of land cover class in
thematic maps. In order to smooth the homogeneous regions
and preserve class boundaries simultaneously, bilateral filtering
uses a low-pass domain filter to average pixel values which
occupy a nearby spatial location based on geometric distance
and uses a range filter to average pixel values with weights that
decay with photometric dissimilarity [39], [40]. By contrast,
SA_SSMSRM uses a geometric distance decay function to
reduce the weights for subpixels which are located spatially
distant to the target subpixel and uses a photometric distance
decay function to reduce the weights for subpixels whose
corresponding PAN image pixel values are dissimilar to the
PAN pixel value of the target subpixel.

B. Estimation of λ0

Based on (1), (11), and (14), the SA_SSMSRM objective
function for the subpixel ai,k is expressed as

E (c(ai,k)) =λ∗ · Ep (c(ai,k)) + Es (c(ai,k))

=λ0 · Ep
SA (c(ai,k)) + Es (c(ai,k)) (15)
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where Ep
SA(c(ai,k)) is the revised prior term according to the

spatially adaptive smoothing parameter and is calculated as

Ep
SA (c(ai,k)) =

∑
l∈N(ai,k)

e−0.5·(dp(g(ai,k),g(al))/σ)
2

·δ (c(ai,k), c(al))
dg (ai,k, al)

. (16)

Obviously, the accurate labeling of the subpixel ai,k depends
on an appropriate setting of λ0.

The data range of the prior term depends on the neigh-
borhood window size, the geometric distance decay function
of subpixels, and the photometric distance decay function of
interpolated PAN image pixels. The data range of the spectral
term also varies drastically depending on the number of land
cover classes, the radiometric resolution of the input image, and
the number of bands. The uncertainty associated with the data
ranges of the prior and spectral terms hinders the optimization
of the smoothing parameter. Jia and Richards [34] proposed
a method to alleviate the influence of the date range of prior
and spectral terms on spatial–spectral managed classification at
the pixel scale. In this paper, transformations of the prior and
spectral terms are performed at the subpixel scale to alleviate
the influence of the data range of prior and spectral terms in
SA_SSMSRM.

For each subpixel, the revised prior term is divided by the
sum of the absolute values of all subpixels in all classes

Ep (c(ai,k))
∗ =

Ep
SA (c(ai,k))

N∑
n=1

F 2
Y X∑

m=1

c∑
α=1

|Ep
SA (cα(an,m))|

(17)

where cα(an,m) denotes the label of the αth class for sub-
pixel an,m.

For each subpixel, the spectral term is divided by the sum of
all subpixels in all classes

Es (c(ai,k))
∗ =

Es (c(ai,k))

N∑
n=1

F 2
Y X∑

m=1

c∑
α=1

Es (cα(an,m))

. (18)

The SA_SSMSRM objective function is thus rewritten as

E (c(ai,k)) = λ0 · Ep (c(ai,k))
∗ + Es (c(ai,k))

∗ . (19)

The objective function in (19) is essentially a modification
of (15) by dividing the prior and spectral terms by two adap-
tive coefficients. The SA_SSMSRM objective function can be
solved by iterative methods such as iterative conditional modes
and simulated annealing [41]. In each iteration, the two adaptive
coefficient values are calculated first. Then, the prior and spec-
tral terms for all subpixels are divided by these two adaptive
coefficients which are fixed as constants in each iteration. In this
way, the modification of the objective function does not change
the decision rule. As the data ranges of both prior and spectral
terms are considered in (19), it is easier to set the value of the
smoothing parameter. The important mathematical variables are
shown in Table I.

TABLE I
MATHEMATICAL VARIABLES DEFINITION

IV. MODEL OPTIMIZATION AND ACCURACY ASSESSMENT

A. Model Optimization

The initialized SR map affects the convergence speed of the
model and the accuracy of the final SR map. In this paper, the
initialized SR map is generated according to the fraction images
generated from a spectral unmixing model. This initialization
is widely used in SSMSRM to achieve fast convergence and
high accuracy [10], [23], [24], [26]. The CLSU algorithm was
applied to unmix the MS image [42]. The number of subpixels
in each class and in each MS image pixels is determined
by multiplying the class area proportion according to fraction
images and the square of scale factor (F 2

YX). Finally, the
subpixels within each MS image pixel are randomly located,
and the initialized SR map is obtained.

The generation of the optimal SR map by SA_SSMSRM is
achieved by minimizing the objective function in (19). Simu-
lated annealing is a widely used algorithm to solve single and
multiobjective optimization problems where a desired global
minimum is hidden among many local minima [41]. Simulated
annealing can avoid being trapped in the local minimum by
controlling the acceptance of some inferior solutions which
increase the objective function’s value [43]. The acceptance
of inferior solutions is dependent on a parameter T , which
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Fig. 3. Flow chart of the SA_SSMSRM model.

is analogous to the temperature associated with the physical
processes of the annealing of molten model. The annealing
algorithm is defined on a power law decay function, where T
at iteration count is changed according to

Tcount = γ · Tcount−1. (20)

The parameter γ ∈ (0, 1) controls the rate of temperature de-
crease. With the decrement of T , the inferior solutions will
be accepted with low probability, and simulated annealing
terminates when T is very small where the global minimum
of the objective function is reached. All subpixel labels are up-
dated using the Metropolis–Hastings sampler [43]. The optimal
values of the simulated annealing parameters play an important
role in SSMSRM. For both O_SSMSRM and SA_SSMSRM,
the optimal simulated annealing parameter values were set
through many trials. In this paper, the initial temperature was
set as 3, the maximal iteration number was set as 120, and
the parameter γ was set as 0.9 [24]. With these simulated an-
nealing parameters, the convergence of the model was reached
between 70 and 120 iterations for all experiments. The entire
SA_SSMSRM process is illustrated in Fig. 3.

Step 1) Unmix the MS image to generate fraction images,
and initiate the SR land cover map.

Step 2) Interpolate the PAN image to the subpixel scale.
Step 3) Increase the iteration number and decrease the

temperature. Calculate the adaptive coefficients for
the prior and spectral terms according to (17)
and (18). Update all the subpixel labels using the
Metropolis–Hastings sampler [43].

Step 4) End the iteration if the iteration number reaches
a predefined number or if less than 0.1% of the
total subpixels were changed after two consecutive
iterations. Otherwise, increase the iteration number,
and return to Step 3).

B. Accuracy Assessment

The overall accuracy (OA), which is defined at the fine-
resolution pixel scale (subpixel scale), was adopted to evaluate
the accuracy of the model [44]. OA is defined as the ratio of
the number of correctly labeled subpixels to the total number of
subpixels in the image. The root-mean-square error of fraction
images (fraction RMSE), which measures the difference in each
MS pixel between the SR land cover map produced by SRM
and the reference land cover map used for validation, was also
applied [45]

fraction RMSE =
1

c

c∑
α=1

√√√√ 1

N

N∑
i=1

(θαi − ωαi)2 (21)

where θαi is the class area proportion of class α in the MS
pixel i in the SR land cover map and ωαi is the class area
proportion of class α in the MS pixel i in the reference land
cover map. In addition, the mean square error (MSE) was used
to evaluate the gray-level similarity between the origin fine-
resolution PAN image (which is used for manually digitalizing
the reference map) and the interpolated fine-resolution PAN
image produced by the nearest-neighbor, bilinear, and bicubic
interpolations from the coarse-resolution PAN image (which is
used as SA_SSMSRM input). MSE is calculated as

MSE=
1

N × F 2
Y X

N∑
n=1

F 2
Y X∑

m=1

(gorigin(an,m)−g(an,m))2 (22)

where gorigin(an,m) is the gray value in the origin fine-
resolution PAN image and g(an,m) is the gray value in the
interpolated fine-resolution PAN image.

V. EXPERIMENTAL RESULTS

A. Degraded QuickBird Image

1) Data Description: A QuickBird image of Wuhan, Hubei
Province, China, was used to test the performance of the
proposed model. The experiment was conducted in areas of
20 × 20 pixels of 2.4-m spatial resolution MS bands (near-
infrared, red, green, and blue) and 80 × 80 pixels of a 0.6-m
spatial resolution PAN band. The MS image was degraded to
a 4.8-m spatial resolution MS image, and the PAN image was
degraded to a 1.2-m spatial resolution PAN image as the data
source (FY X = 8, FZX = 2) using a pixel aggregate function
[see Fig. 4(a) and (b)] [46]. This simulation method ensured that
there was no image registration error between the reference map
and the resultant SR land cover map [31], [32]. The 0.6-m PAN
image was manually digitized to represent the reference land
cover map [see Fig. 4(c)]. Three land cover classes are present
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Fig. 4. (a) 4.8-m degraded QuickBird MS image (band 4-3-2) (b) 1.2-m
degraded QuickBird PAN image (c) 0.6-m reference land cover map.

in the images: grass, tree, and path. The endmember signatures
were selected from the degraded MS and PAN images.

2) Model Description: The performance of the
SA_SSMSRM model was compared with a hard classification
model and different SRM models. In this paper, a maximum
likelihood classifier (MLC) was used to generate a hard
classification map based on an MS image. A traditional SRM
solely using fraction images extracted from the MS image as
input was adopted. First, a constraint linear unmixing model
(CLUM) was used to unmix pixels. Then, a PSA was used to
allocate the subpixels (CLUM_PSA) [11], [12]. The proposed
SA_SSMSRM was also compared with O_SSMSRM with a
fixed nonadaptive smoothing parameter that was applied to
both MS and PAN images.

The performances of different SRM models were affected
by their parameters. A set of parameters was tested to fully
understand the influences of these parameters on SRM results.
For CLUM_PSA, the neighborhood window size W was set
as 5 [35]. For both O_SSMSRM and SA_SSMSRM, W was
set as 3, 5, 7, and 9, respectively. The O_SSMSRM smoothing
parameter λ was set from 10 (a relative small value which led
to insufficient smoothing of the SR map) to 2000 (a relative
large value which led to oversmoothing of the SR map) with an
interval of 10. For SA_SSMSRM, the smoothing parameter λ0

ranged from 0.1 to 0.5 with an interval of 0.1. The process of
determining the appropriate value of the nonlinear parameter σ
in SA_SSMSRM is complex. Generally, the value of σ should
not be beyond the interpolated PAN pixel photometric distance
of class boundaries. Otherwise, the smoothing parameter val-
ues of subpixels located in homogeneous regions and class
boundaries are approximate. However, the interpolated PAN
pixel photometric distances between class boundaries in the
image are spatially variable, making it complex to determine
the value of σ properly. An index, called the average PAN pixel
photometric distance of endmember signatures (IAPPPD), was
used to determine the value of σ in this paper. IAPPPD adopts
the average photometric distance between all different pairs
of endmember signatures in the PAN image as an indicator
of the interpolated PAN pixel photometric distance of class
boundaries

IAPPPD =

(
c−1∑
α=1

c∑
β=α+1

∣∣SPAN(Cα) − SPAN(Cβ)

∣∣)

c·(c−1)
2

(23)

where SPAN(Cα) and SPAN(Cβ) represent the spectral signa-
tures of land covers α and β in the PAN image. The nonlinear

parameter σ was set as IAPPPD/20, IAPPPD/10, IAPPPD/5,
IAPPPD/4, IAPPPD/3, IAPPPD/2, and IAPPPD, respec-
tively. SRM was run ten times for each combination of
the aforementioned parameters. The average OA value for
O_SSMSRM, which was averaged from ten repetitive experi-
ments with the same model parameters of W and λ, and the
average OA value for SA_SSMSRM, which was averaged from
ten repetitive experiments with the same model parameters of
W , λ0, and σ and the same PAN image interpolation algo-
rithms, were calculated for comparison.

3) Results: All models were tested on an Intel Core 2
Processor 2.66-GHz Duo CPU with 1.98-GB RAM using
MATLAB version 7.3. The iteration numbers were 120 for both
O_SSMSRM and SA_SSMSRM with the same parameters in
simulated annealing optimization. The running time was about
35 s for CLUM_PSA, 120 s for O_SSMSRM, and 210 s for
SA_SSMSRM. The OA values for MLC and CLUM_PSA
were very low. For MLC, the OA value was 0.6753, and the
fraction RMSE was 0.4612. For CLUM_PSA, the OA value
was 0.6413, and the fraction RMSE was 0.4093. The highest
average OA values denoted as OA∗, which were derived from
the average OA values with the same value of W and different
values of λ for O_SSMSRM or derived from the average OA
values with the same value of W and σ and the same PAN
image interpolation algorithm and different values of λ0 for
SA_SSMSRM, are shown in Fig. 5. For SSMSRM, the OA∗

value increased to higher than 0.8, and the fraction RMSE
values decreased to lower than 0.3 (see Fig. 5). This improve-
ment showed the advantage of incorporating the PAN image in
an SRM model. The OA∗ value for O_SSMSRM varied with
the window size W . When W = 3, only eight subpixels were
included in the neighborhood, and the spatial smoothing effect
was not obvious. When W = 9, there were many neighboring
subpixels included in the neighborhood, which may probably
lead to a significant oversmoothing effect on SR maps produced
by O_SSMSRM. Results showed that O_SSMSRM can gen-
erate an SR map with OA∗ of 0.8514 when W = 5 with the
corresponding fraction RMSE of 0.2810.

The PAN image interpolation algorithms, the window size
W , and the nonlinear parameter σ played a combined role in
the optimization of OA∗ for SA_SSMSRM. The OA∗ values
were low when W = 3 for different PAN image interpolation
algorithms because the spatial smoothing effect was not ob-
vious. By contrast, the OA∗ values were similar and relative
higher when W was larger than 3 with different interpolated
PAN images, with the variation of σ. The pixel values of
the nearest-neighbor interpolated PAN image were piecewise
constant [see Fig. 6(a)]. The subpixels in the same PAN
pixel shared the same pixel value in the interpolated image,
whereas the subpixels in different PAN pixels had different
pixel values in most cases. As a result, the SA_SSMSRM
smoothing parameter values for neighboring subpixels, which
were calculated based on the interpolated PAN image pixels,
were discontinuous. The OA∗ value for SA_SSMSRM with the
nearest-neighbor interpolated PAN image was 0.8741 (W =
9, σ = IAPPPD/10, and the corresponding fraction RMSE
was 0.2507). By contrast, the bilinear and bicubic interpolated
PAN images were smoother [see Fig. 6(b) and (c)]. The MSE
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Fig. 5. OA∗ values and the corresponding fraction RMSE values for O_SSMSRM and SA_SSMSRM with the variation of PAN image interpolation algorithms,
window size W , and nonlinear parameter σ for QuickBird image. Error bars represent standard deviation of the OA∗ values and fraction RMSE values.

Fig. 6. Interpolated QuickBird PAN image produced by (a) nearest-neighbor
interpolation, (b) bilinear interpolation, and (c) bicubic interpolation.

values of bilinear and bicubic interpolated PAN images were
182.16 and 102.44, respectively, lower than that of the nearest-
neighbor interpolation (MSE = 264.56). The OA∗ value for
SA_SSMSRM with the bilinear interpolated PAN image was
0.8917 (W = 9, σ = IAPPPD/5, and the corresponding frac-
tion RMSE was 0.2399), and the OA∗ value for SA_SSMSRM
with the bicubic interpolated PAN image was 0.8947 (W =
9, σ = IAPPPD/5, and the corresponding fraction RMSE
was 0.2370).

The OA∗ value and fraction RMSE values for SA_SSMSRM
were related to σ. For different values of W and PAN image
interpolation algorithms, the OA∗ value was obtained when
σ = IAPPPD/10 or σ = IAPPPD/5. When σ was small, the
smoothing parameter values for subpixels with large PAN pixel
photometric distances were probably oversuppressed. When
σ was extremely large, the smoothing parameter values for
subpixels with different PAN pixel photometric distances were
almost equal, and SA_SSMSRM generated similar SR maps as
O_SSMSRM.

Fig. 7. Reference land cover map, hard classification map produced by MLC,
and SR maps produced by different SRM models with different parameters for
QuickBird image.

The hard classification map generated by MLC and the SR
maps generated by different SRM models in terms of OA∗ are
shown in Fig. 7. The hard classification map was generated
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TABLE II
SMOOTHING PARAMETER VALUES FOR O_SSMSRM AND SA_SSMSRM

CORRESPONDING TO OA∗ FOR QUICKBIRD IMAGE

at the pixel scale, and the class boundaries were rough. In
the SR map generated by CLUM_PSA, small structure details
were lost due to the low spatial resolution of MS pixels. This
problem became severer when the path object was smaller
than the spatial resolution of the MS pixel. Numerous parts of
the SR map generated by O_SSMSRM were rough along the
class boundaries when W = 3. Jagged boundaries and several
speckle artifacts remained with increased W , and the path was
separated into discrete units which attribute to oversmoothing.
Therefore, adopting a fixed smoothing parameter in SSMSRM
cannot reconstruct homogeneous regions and class boundaries
simultaneously.

By contrast, the SR maps generated by SA_SSMSRM were
obviously similar to the reference map. Most path objects were
connected, and speckle artifacts were almost eliminated. The
PAN image pixel values were piecewise constant after the
nearest-neighbor interpolation [see Fig. 6(a)]. Consequently,
the smoothing parameter values for neighboring subpixels were
piecewise constant and discontinuous, and the class boundaries
were irregular and rough. The interpolated PAN image pixel
values were continuous after bilinear and bicubic interpolations
[see Fig. 6(b) and (c)], and the class boundaries in the cor-
responding SR maps were smoothed. The improvement was
obvious by identifying the path smaller than the MS spatial
resolution. The local variance of PAN pixel values is usually
high for small objects, and the PAN pixel photometric distances
between subpixels located on class boundaries are more distant.
The objects smaller than the MS spatial resolution, which were
smoothed and clustered into large objects in SR maps produced
by O_SSMSRM, were better preserved in SR maps produced
by SA_SSMSRM.

The smoothing parameter values for O_SSMSRM and
SA_SSMSRM corresponding to OA∗ for the QuickBird image
are listed in Table II. The range of the optimal smoothing
parameter value for O_SSMSRM was much larger than that
for SA_SSMSRM. Consequently, a longer time was required
to find the optimal smoothing parameter value, which hindered
the application of O_SSMSRM to some extent. By contrast, the
optimal smoothing parameter value for SA_SSMSRM was eas-
ier to determine due to the injection of the adaptive coefficients
in prior and spectral terms.

B. Degraded IKONOS Image

1) Data and Model Description: An IKONOS image of
Dujiangyan, Sichuan Province, China, was also adopted to

Fig. 8. (a) 8-m degraded IKONOS MS image (band 4-3-2). (b) 2-m degraded
IKONOS PAN image. (c) 1-m reference land cover map.

compare the performance of different models. The experiment
was implemented in areas of 40 × 40 pixels of 4-m spatial
resolution MS bands (near-infrared, red, green, and blue) and
160 × 160 pixels of a 1-m spatial resolution PAN band. The
MS image was degraded to an 8-m MS image, and the PAN
image was degraded to a 2-m PAN image as the data source
(FY X = 8, FZX = 2) using the pixel aggregate function [see
Fig. 8(a) and (b)]. The PAN image was manually digitized to
represent the reference land cover map [see Fig. 8(c)]. Four
kinds of farmlands were present in the images. The endmember
signatures were selected from the degraded MS and PAN
images. MLC, CLUM_PSA, O_SSMSRM, and SA_SSMSRM
were compared. The parameters for different SRM models were
set the same as those used in the QuickBird image experi-
ment. SRM was run ten times for each combination of the
parameters.

2) Results: The running time was about 190 s for
CLUM_PSA, 630 s for O_SSMSRM, and 1100 s for
SA_SSMSRM. For MLC, the OA value was 0.8204, and the
fraction RMSE value was 0.2971. For CLUM_PSA, the OA
value was 0.7841, and the fraction RMSE was 0.2946. For
O_SSMSRM and SA_SSMSRM using both MS and PAN
images as input, the OA∗ values increased to higher than 0.88,
and the fraction RMSE values decreased to lower than 0.22
(see Fig. 9). For O_SSMSRM, the OA∗ value was 0.9366,
and the lowest fraction RMSE was 0.1612 when W = 5. The
OA∗ value for SA_SSMSRM varied with PAN image inter-
polation algorithms, window size W , and nonlinear param-
eter σ. The OA∗ value for SA_SSMSRM with the bilinear
and bicubic interpolated PAN images was higher than that
using the nearest-neighbor interpolated PAN image because
the nearest-neighbor interpolated PAN image was piecewise
constant [see Fig. 10(a)–(c)]. The MSE value of the nearest-
neighbor interpolated PAN image was 531.01, higher than
the MSE values of the bilinear interpolated (MSE = 442.30)
and bicubic interpolated (MSE = 346.22) PAN images.
The OA∗ value for SA_SSMSRM was 0.9531 (bicubic interpo-
lation, W = 7, σ = IAPPPD/4, and the corresponding fraction
RMSE was 0.1421), which was 0.0165 higher than that of
O_SSMSRM.

The hard classification map and the SR maps generated from
different models are shown in Fig. 11. The hard classification
map was generated with jagged boundaries because of the low
MS image spatial resolution. There were many speckle artifacts
in the SR map produced by CLUM_PSA due to MS pixel
spectral unmixing error. For instance, assuming that the spectral
unmixing error for a pure MS pixel is 18.75%, there will
be F 2

Y X × 0.1875 = 12 subpixels labeled as wrong classes.
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Fig. 9. OA∗ values and the corresponding fraction RMSE values for O_SSMSRM and SA_SSMSRM with the variation of PAN image interpolation algorithms,
window size W , and the nonlinear parameter σ for IKONOS image. Error bars represent standard deviation of the OA∗ values and fraction RMSE values.

Fig. 10. Interpolated IKONOS PAN image produced by (a) nearest-neighbor
interpolation, (b) bilinear interpolation, and (c) bicubic interpolation.

These 12 subpixels exist as speckle artifacts in the CLUM_PSA
result. Additionally, the path which was smaller than the spatial
resolution of the MS pixel (located in the middle of the scene)
was not mapped by CLUM_PSA. By contrast, a part of the path
was mapped by adding a fine resolution of the PAN image as
input. Most speckle artifacts were eliminated due to the spatial
smoothing effect of SSMSRM. For O_SSMSRM, the path was
partly mapped when W was not larger than 5. The path was
eliminated, and the corners of objects were rounded when W
was larger than 5 due to the oversmoothing effect. By contrast, a
larger part of the path and many land cover object corners were
retained in the SA_SSMSRM maps. Parts of class boundaries
were roughly produced by SA_SSMSRM with the nearest-
neighbor interpolated PAN image, whereas class boundaries
were smoothly produced by SA_SSMSRM with the bilinear
and bicubic interpolated PAN images. Moreover, the optimal
smoothing parameter value for SA_SSMSRM was easier to
determine compared with that for O_SSMSRM (see Table III),
showing the advantage of the proposed model.

Fig. 11. Reference land cover map, hard classification map produced by
MLC, and SR maps produced by different SRM models with different parame-
ters for IKONOS image.

From the aforementioned experimental results using two
degraded images, the performances of SA_SSMSRM and
O_SSMSRM were affected by many factors. First, the
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TABLE III
SMOOTHING PARAMETER VALUES FOR O_SSMSRM AND SA_SSMSRM

CORRESPONDING TO OA∗ FOR IKONOS IMAGE

accuracies in the IKONOS experiment were higher than those
in the QuickBird experiment for both SA_SSMSRM and
O_SSMSRM. This is because the performance of SSMSRM
is affected by land cover class spectral separability [24]. Class
spectral separability plays a role in SSMSRM that is similar to
the signal-to-noise ratio in signal processing, and lower class
spectral separability will lead SSMSRM to confuse between
classes. The average Bhattacharyya distance [24], which mea-
sures the average class spectral separability between different
pairs of classes, was used in this paper. The average Bhat-
tacharyya distance was 6.048 for the QuickBird MS image,
lower than that of 16.343 for the IKONOS MS image; the
average Bhattacharyya distance was 5.870 for the QuickBird
PAN image, lower than that of 6.261 for the IKONOS PAN
image. Second, the improvement of SA_SSMSRM versus
O_SSMSRM was more obvious in the QuickBird experiment
than in the IKONOS experiment. This is because the greatest
improvement of SA_SSMSRM was reconstructing the path
objects that were smaller than the spatial resolution of MS
image pixels, and there were more path objects with small
size in the QuickBird image than in the IKONOS image. In
summary, the proposed SA_SSMSRM can perform better when
the image provides high class spectral separability between land
cover classes and can show its greatest improvement compared
with other SRM models when the image contains many objects
that are smaller than the MS image pixel.

C. Real ALOS Image

1) Data and Model Description: An investigation on real
ALOS remotely sensed images was conducted. A subset cen-
tered on an airport in Haneda, Japan, acquired on March 1,
2007, was used as the data source. The subset covered an MS
image (100 × 100 pixels) acquired by the Advanced Visible and
Near Infrared Radiometer type-2 (with the spatial resolution of
10 m and four bands of near-infrared, red, green, and blue) and
a PAN image (400 × 400 pixels) acquired by the Panchromatic
Remote-sensing Instrument for Stereo Mapping (with the spa-
tial resolution of 2.5 m), which are shown in Fig. 12(a) and
(b) (FY Z = 4). A Google Earth image acquired on February
12, 2007 with the spatial resolution higher than that of the
ALOS PAN image was manually digitalized as the reference
map [see Fig. 12(c)]. The root-mean-square error of image reg-
istration for MS and PAN images and for the PAN and Google
Earth image was less than 1 pixel of the PAN image. Each

Fig. 12. (a) 10-m ALOS MS image (band 4-3-2). (b) 2.5-m ALOS PAN
image. (c) 1.25-m reference land cover map. (d) Hard classification map
produced by MLC. (e) SR map produced by CLUM_PSA. (f) SR map produced
by O_SSMSRM according to the highest OA value (λ = 7). (g) SR map
produced by SA_SSMSRM.

PAN image pixel contained 4 fine-resolution reference image
pixels (FZX = 2). Four land cover classes (water, grass, dark
surface, and white surface) were included. The endmember
signatures were selected from the MS and PAN images directly.
MLC, CLUM_PSA, and O_SSMSRM were compared with
SA_SSMSRM. For CLUM_PSA, the neighborhood window
size W was set as 5. For O_SSMSRM, W was set as 5, and
λ ranged from 1 to 20 with an interval of 1. For SA_SSMSRM,
bilinear interpolation was used for PAN image interpolation.
SA_SSMSRM parameters were as follows: W = 7, λ0 = 0.3,
and σ = IAPPPD/10.

2) Results: The maps generated by different models are
shown in Fig. 12. In the hard classification map, the class
boundaries were rough [see Fig. 12(d)]. Many small white
surface objects (smaller than an MS pixel) were eliminated. In
the SR map generated by CLUM_PSA, many speckle artifacts
existed due to the pixel spectral unmixing error [see Fig. 12(e)].
Most of the speckle artifacts were eliminated due to the spatial
smoothing effect of O_SSMSRM [see Fig. 12(f)]. Some small
white surface objects were mapped in the SR result due to the
injection of the PAN image. However, the spatial details of
many white surface objects were lost. Many connected white
surface objects were incorrectly separated, and some adjacent
objects were incorrectly combined. A great improvement of
small structure details was found in the SA_SSMSRM map
in which the spatial details of small objects matched those
in the reference map much better [see Fig. 12(g)]. The ac-
curacy statistics of different models are listed in Table IV.
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TABLE IV
ACCURACY STATISTICS OF DIFFERENT MODELS

Although the improvement of accuracy was not very ob-
vious because there were many pure pixels in the image,
the SA_SSMSRM model can generate SR maps with higher
OA value and lower fraction RMSE value compared with
other models.

VI. CONCLUSION

A spatially adaptive SRM model is proposed in this paper.
The proposed SA_SSMSRM model incorporates both MS and
PAN images as input and can be applied directly to remotely
sensed images. Similar to previous SRM models, the proposed
model uses PAN image pixel values as the spectral constraint.
In addition, the proposed model also uses the PAN image
pixel photometric distance to identify homogeneous regions
of objects and class boundaries. The homogeneous regions in
the PAN images are characterized by the photometric similar-
ity, whereas class boundaries are characterized by photomet-
ric dissimilarity. Spatially adaptive smoothing parameters are
designed based on the similarity of PAN image pixel values
between the central subpixel and its neighboring subpixels.
The SA_SSMSRM model can smooth homogeneous regions
and preserve class boundaries simultaneously. Moreover, the
value of the appropriate smoothing parameter is affected by
the data ranges of the prior and spectral terms. In the proposed
model, the prior and spectral terms are divided by two adaptive
coefficients which are calculated according to the statistical
characteristics of the data ranges of the prior and spectral terms
when optimizing the model.

Both degraded and real remotely sensed images were used in
experiments. The hard classification map generated land cover
maps with jagged and rough boundaries. The SRM model,
which first unmixed MS image pixel spectral term and then
allocated the subpixels based on the fraction images, generated
SR maps with many speckle artifacts due to pixel spectral
unmixing error, and the object spatial details within the MS
pixel were not mapped because of the coarse spatial resolution
of the MS image. The SSMSRM model using MS and PAN
images but with a fixed smoothing parameter could not smooth
the homogeneous region and preserve the class boundary si-
multaneously, and speckle artifacts and oversmoothed class
boundaries were often found in the SR map. By contrast,
the SA_SSMSRM model smoothed the homogeneous region
and preserved class boundaries simultaneously. The speckle
artifacts were mostly eliminated, and the spatial details of land
cover objects were preserved. Accuracy statistics showed that
SA_SSMSRM generated SR maps with higher OA and lower
fraction RMSE. Moreover, the range of the optimal smoothing
parameter value of SSMSRM with a fixed smoothing parameter

value was much larger than that of SA_SSMSRM. The appro-
priate value of the smoothing parameter in SA_SSMSRM can
be easily found, making the application of the proposed model
more convenient. The experiment with the real remotely sensed
image suggested that the proposed model requires accurate
geometric registration between pixels of the MS and PAN
images.

The application of SA_SSMSRM was affected by the input
image and model parameters. First, SA_SSMSRM can perform
better when the image provides high class spectral separabil-
ity between land cover classes, and it shows its greatest im-
provement compared with other SRM models when the image
contains many objects that are smaller than the MS image
pixel. Second, the shadow pixels become more prominent in
the PAN image as the spatial resolution increases. The shadow
can be classified into a separate class in SA_SSMSRM. Finally,
the performance of SA_SSMSRM was affected by model pa-
rameters. The nearest-neighbor interpolated PAN image was
piecewise constant. In this way, the smoothing parameter values
for neighboring subpixels were discontinuous, and the class
boundaries were rough in the SR map. Bilinear and bicubic
interpolations generated interpolated PAN images that were
continuous in values, and the corresponding SR map had
smoothed class boundaries with high OA. The window size
W represented the number of neighboring subpixels. When
W = 3, only 8 subpixels were used for spatial smoothing, and
speckle artifacts were more likely to be found in the processed
SR map. The window sizes of 5, 7, and 9 were recommended to
eliminate speckle artifacts. The optimal value of the smoothing
parameter λ0 was not affected by the spectral range of MS
and PAN images. The λ0 was recommended to be 0.2–0.4
for various remotely sensed sensors. The appropriate value of
the nonlinear parameters σ varied with different PAN images.
Generally, the value of σ should not be set beyond the pixel
photometric distance between class boundaries in interpolated
PAN images so that the smoothing parameter values are not
approximate for subpixels located in homogeneous regions and
class boundaries. In this paper, the average PAN pixel photo-
metric distance of the endmember signature index was pro-
posed to facilitate the setting of σ appropriately. Experiments
showed that the SA_SSMSRM generated a high-accuracy SR
map when σ ranged from one-tenth to half of the average PAN
pixel photometric distance of the endmember signature index
value.

The integration of different remotely sensed data (including
MS image, PAN image, DEM, LIDAR, etc.) is an interesting
task for providing more information in SRM. An important
issue is what kind of information is to be used for SRM. For
instance, a PAN image provides both spectral information and
texture information of land cover objects that are useful for
SRM. Furthermore, how to use the information provided by the
data to conduct an SRM model with less and easy-to-determine
model parameters is important when applying SRM into prac-
tical applications, particularly when directly applying SRM to
remotely sensed images instead of assuming that the fraction
images are ideally acquired without errors. A comprehensive
study of more effectively utilizing the multisource data for SRM
is required in the future.
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