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Abstract

The Landsat 8 Operational Land Imager (OLI) was investigated for its performance in monitoring dynamic
riverine surface water turbidity. China’s Hanjiang River, the largest tributary of the Yangtze River, was used as
a case study. Field surveys conducted between April 2013 and January 2014 show a wide range of turbidity
(15.8–130.2 nephelometric turbidity units). A practical exponential retrieval algorithm used in conjunction with
OLI bands on Landsat 8 was developed to assess compatibility between satellite remote sensing reflectance and
in situ measured data. Results obtained for the study area accurately match in situ data at most stations (R2 >
0.90) for the validation phase. It was found that Landsat 8 OLI imagery can be used to estimate turbidity in
inland riverine systems when a suitable retrieval algorithm is applied. In addition, algal blooms in the riverine
system can be detected by OLI imagery.
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Introduction

Turbidity (Tur) is considered a key water quality vari-
able due to its impact on light suppression, biochemical

oxygen demand, sediment-associated contaminant transport,
and suspended sediment loads, which affect organisms and
inland riverine habitats (Lawler et al., 2006; Davies-Colley
et al., 2011; Jones et al., 2012). Owing to unique optical
properties of turbidity, this parameter can be estimated from
remotely sensed data, thus achieving wide spatial and tem-
poral coverage compared with traditional sampling methods
(Simis et al., 2007; Guttler et al., 2013).

Well-established algorithms for recurrent ocean sensor
monitoring of turbidity exist, employing reflectance in the
blue and green color regions of oceans (Gordon and Franz,
2008; Neukermans et al., 2012). However, these algorithms
may not be appropriate for inland water systems such as
rivers due to differing optical properties of sea water bodies
(Le et al., 2011; Yacobi et al., 2011; Li et al., 2012). Al-
though some ocean color sensors possess short revisit times

with high spectral resolution and sensitivity, which makes
them suitable for studies of some inland water bodies such as
large lakes or reservoirs (Shi et al., 2014, 2015; Zhang et al.,
2016a), their spatial resolution is typically too coarse to ad-
equately investigate riverine features, making them unsuit-
able for monitoring water quality variations in these systems
(Ghabavati et al., 2008; Onderka and Pekárová, 2008; Yu
et al., 2012).

Landsat sensors, such as the Landsat 5 (Thematic Mapper)
and Landsat 7 (Enhanced Thematic Mapper Plus), may have
longer revisit times and lower spectral and radiometric res-
olution than ocean-specific instruments, but possess higher
spatial resolution. Accordingly, those sensors have been used
for inland water studies (Vincent et al., 2004; Ma et al.,
Onderka and Pekárová, 2008; Kuster, 2012).

After the retirement of Landsat 5, the failure of Landsat 6,
and limitations with Landsat 7, the Landsat 8 satellite was
launched on February 11, 2013, and operations began on May
30 of the same year. With its nine bands, Landsat 8 imagery
provides sufficient spatial resolution, in which features such
as islands within rivers and bridges spanning rivers can be
easily distinguished as highly reflective structures before a
dark background (Vanhellemont and Ruddick, 2014). Com-
pared with previous Landsat missions, Landsat 8 also offers
higher signal-to-noise ratios. This is primarily the result of
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longer integration times associated with the push broom
scanner as well as improved quantization (NASA, 2016;
USGS, 2016). Because of inclusion of the Operational Land
Imager (OLI), Landsat 8 has the potential to become the first
Landsat sensor with the radiometric resolution necessary for
retrieval of chlorophyll and suspended material constituents
in oceans and lakes (Gerace et al., 2013; Pahlevan and Schott,
2013; Wu et al., 2015; Zhang et al., 2016b). However, few
studies have applied Landsat 8 images to retrieve riverine
water quality parameters.

Rapid economic development and anthropogenic activity
in and around Hanjiang River have increased ecological
pressure on its water quality, which is of great environ-
mental importance to Hubei Province (Liu and Yu, 1992;
Wang et al., 2004; Guo et al., 2014). In addition, the Dan-
jiangkou Dam, which is on the upstream of the Hanjiang
River and was originally constructed in 1958, has since
been raised, and the Danjiangkou Reservoir, created by the
construction of Danjiangkou Dam, has been used as part of
the South-to-North Water Diversion Project (SNWDP) since
2014. Research has shown the probability that algal blooms
will increase in the mid-downstream region of the Hanjiang
River after completion of the SNWDP (Xie et al., 2004).

Therefore, comprehensive monitoring is needed to address
changes in water quality in this area. Accordingly, the ob-
jectives of this study are to apply and evaluate the use of

readily available imagery from Landsat 8 together with
published literature to assess water turbidity changes in the
inland riverine system.

Study Area and Data Processing

Study area

The Hanjiang River (historically called the Hanshui River)
is a major tributary of the Yangtze River and has a total length
of 1,577 km. The river originates in the mountainous region
of southwestern Shaanxi and flows eastward across the
southern expanse of the province. The Qin Mountains are
north of the mouth of the river. Further north is the Wei River,
the largest tributary of the Yellow River, which forms the
southern boundary of the Ordos Loop. The Daba Mountains to
the south of the river act as a natural boundary that separates
Shaanxi Province from Sichuan Province and Chongqing City.
The river flows southeastward through Hubei Province,
connecting with the Yangtze River at Wuhan, the provincial
capital.

In the study area (Fig. 1), the main cities along the Han-
jiang River are Qianjiang City (population 1.1 million) to the
west and Xiantao City (population 1.2 million) to the east.
Both cities are located in the mid-downstream region of
Hanjiang River. The area belongs to the subtropical monsoon
climate zone, with mild climate characterized by four distinct

FIG. 1. Mosaic map made with Landsat 8 image (Red: 630–680 nm, Green: 525–600 nm, Blue: 450–515 nm) collected on
June 13, 2013, showing the study area and location of Hanjiang River in China. Yellow points represent the data of 15
samples for modeling of each image. Yellow cross represents the data of 5 samples for validation of each image.
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seasons, abundant rainfall, a long (256 days) frost-free pe-
riod, 2002.6 annual average sunshine hours, and an average
annual temperature of 16.3�C. The division into seasons is
based on an average temperature below 10�C during winter, a
temperature above 22�C during summer, and temperatures
between 10�C and 22�C during spring and autumn. Spring
lasts from roughly mid-March to mid-May (about 70 days),
summer from late May to mid-September (about 120 days),
autumn from late September to mid-November (about
65 days), and winter from late November to early March
(about 110 days). In the study area, the southern part of the
Hanjiang River is characterized by industrial installations,
including auto part, pharmaceutical, chemical, electronic,
and nonwoven fabric factories, while the northern part of the
river is mainly characterized by aquaculture and farming.

Field survey data

Four field surveys were conducted in the study area be-
tween April 2013 and January 2014. Twenty water samples
were collected during each survey, including 15 samples for
modeling and 5 samples for validation (the position of each
sample is provided in Fig. 1). In total, 80 water samples for
surface turbidity were collected. At each station, the distance
between two adjacent data collection sites was 2–3 km.
Surface water turbidity was measured in situ using a 2100P
Hach Turbidimeter (Hach Company, Loveland, Colorado),
and the longitudes and latitudes for each sampling location
were obtained using a Global Positioning System receiver
(Garmin Ltd., Lenexa, KS). Description of measured tur-
bidity is provided in Table 1 and Fig. 2.

Remote sensing data

The OLI instrument on Landsat 8 is a nine-band push
broom scanner with a swath width of 185 km, eight channels

at 30-m spatial resolution, and one panchromatic channel at
15-m spatial resolution. Five good-quality Level 1T OLI
images were obtained from the U.S. Geological Survey
(USGS) website (http://earthexplorer.usgs gov). The images
covering the area downstream of the Hanjiang River were
examined in detail (Table 2). With reference to some pub-
lished literatures (Shi et al., 2015; Zhang et al., 2016b), tur-
bidity was investigated using OLI band 1 (433–453 nm,
which was not featured on previous Landsat satellites), band
2 (450–515 nm), band 3 (525–600 nm), band 4 (630–680 nm),
and band 5 (845–885 nm).

Data preprocessing of OLI imagery

Standard Landsat 8 OLI images consist of quantized, ca-
librated, and scaled digital numbers (DNs) representing
multispectral image data, which are delivered in 16-bit un-
signed integer format. The DN values were rescaled to the
top-of-atmosphere (TOA) reflectance using the equation
provided by the USGS (http://landsat.usgs.gov Landsat8_
Using_Product.php).

The TOA reflectance is a linear sum of various contribu-
tions, including molecules (Rayleigh scattering), aerosols
(Rayleigh–aerosol interactions), and water (Wang et al.,
2007). An atmospheric correction is used to derive water-
leaving reflectance by removing atmosphere and water sur-
face effects from TOA reflectance. Shortwave infrared
(SWIR) bands have much stronger water absorption than
near-infrared bands, thus the black water assumption for at-
mospheric correction is generally valid in the SWIR region,
even for very turbid waters (Wang et al., 2007). Therefore,
assuming the water-leaving reflectance at the SWIR bands is
zero, a simplified method was employed to estimate the
water-leaving reflectance of Landsat 8 OLI visible and in-
frared bands by removing the total atmosphere and water
surface effects using Equation (1):

FIG. 2. Distribution of measured turbidity in this study
(Total data of 80 samples).

Table 2. Landsat 8/OLI Images Used

Image Date Time

LC81230392013116LGN01 April 26, 2013 02:58:03UTC
LC81230392013164LGN00 June 13, 2013 02:58:17UTC
LC81230392013324LGN00 November 20,

2013
02:57:56UTC

LC81230392014023LGN00 January 23,
2014

02:57:26UTC

LC81230392015090LGN00 March 1, 2016 02:55:44UTC

OLI, Operational Land Imager.

Table 1. Description of In Situ Turbidity Within Study Area

Sampling date
Sampling
number Sampling time

Turbidity
range (NTU)

Mean
value (NTU)

Standard
deviation (NTU)

April 26, 2013 20 02:46UTC–05:39UTC 20.8–49.7 32.3 7.10
June 13, 2013 20 01:52UTC–05:06UTC 39.3–54.4 47.5 4.66
November 20, 2013 20 02:44UTC–06:04UTC 15.8–25.9 20.3 2.62
January 23, 2014 20 01:45UTC–04:56UTC 47.2–130.2 75.5 29.15

NTU, nephelometric turbidity units.

RIVERINE TURBIDITY MONITORING BY LANDSAT 8 3
D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

on
ne

ct
ic

ut
 e

-j
ou

rn
al

 p
ac

ka
ge

 N
E

R
L

 f
ro

m
 o

nl
in

e.
lie

be
rt

pu
b.

co
m

 a
t 0

7/
05

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



Rrs kð Þ¼ Pk� PSWIR, (1)

where Rrs(k) is the water-leaving reflectance at the visible
and infrared bands, Pk is the TOA reflectance with a cor-
rection for solar angle at wavelength k, and PSWIR is the TOA
reflectance at the SWIR bands of Landsat 8.

Topographic maps at a scale of 1:50,000 were used to
register the atmospherically corrected image to Beijing 54/
Gauss–Kruger projection using first-order polynomial and
nearest-neighbor resampling methods, and the root mean
square error (RMSE) of positional accuracy was within half a
pixel. The projected image was reprojected to WGS 84/UTM,
and land areas and small water bodies were removed using
a binary mask created from unsupervised classification of
images.

Formulation of retrieval algorithm

Landsat 8 OLI band satellite Rrs(k) data were extracted for
sampling after atmospheric correction was performed. Three-
quarters (60) of the turbidity data from the first four images
were used to calibrate the retrieval model, while the re-
maining quarter (20) was used for validation.

Several studies have shown that single bands or band
combinations from Landsat series imagery can be used in
turbidity or suspended matter mapping for inland water

systems (Onderka and Pekárová, 2008; Wu et al., 2015). To
obtain the optimal retrieval algorithm, descriptive statistics of
turbidity measurements and their corresponding Landsat 8
OLI image band 1–5 values were analyzed with the support
of SPSS software (IBM. Co., Armonk) to formulate settings.
The coefficient of determination (R2) and RMSE of all cali-
brated models were compared with select ten regression
models with sufficient goodness of fit for estimating turbidity
(Table 3).

For each calibrated Landsat 8-based turbidity retrieval
model, the coefficient of determination (R2) between the
validation data and estimated turbidity, as well as the RMSE,
mean absolute error (MAE), and mean absolute percentage
error (MAPE), was calculated to assess the performance of
the best, stable, Landsat 8-based turbidity model.

Table 3. Retrieval Models for Turbidity (Tur) Based on Landsat 8 OLI Bands Obtained

During the Establishment Phase

Number Formulation X R2 RMSE

1 Tur = 4636.8X2-8104.5X+3573.8 Rrs(2)/Rrs(1) 0.52 16.92
2 Tur = 45.62 · 2 + 11.90X-31.17 Rrs(3)/Rrs(1) 0.91 7.21
3 Tur = 1.16e2.80X Rrs(3)/Rrs(2) 0.87 7.93
4 Tur = 2.57 e2.71X Rrs(4)/Rrs(1) 0.84 9.60
5 Tur = 1.48 e2.99X Rrs(4)/Rrs(2) 0.85 9.26
6 Tur = 26.96X-0.64 Rrs(5)/Rrs(2) 0.24 23.10
7 Tur = -32.98In(X) +17.96 Rrs(5)/Rrs(3) 0.37 19.39
8 Tur = 24.46X-0.71 Rrs(5)/Rrs(4) 0.44 21.07
9 Tur = 1.92 e1.44X Rrs(4)/Rrs(1) + Rrs(4)/Rrs(2) 0.86 9.13

10 Tur = 4.01-28.70X+18.51X2 Rrs(3)/Rrs(2) + Rrs(3)/Rrs(1) 0.92 6.81

R2, coefficient of determination used for retrieval and measured values obtained from the established database; RMSE, root mean square
error.

Table 4. Static Index Applied to Models

to Validate Turbidity

Number R2 MAE RMSE MAPE (%)

1 0.54 15.69 19.65 46.58
2 0.89 6.68 7.58 20.06
3 0.87 7.80 9.96 21.05
4 0.86 7.45 9.28 22.12
5 0.84 8.70 11.37 22.35
6 0.35 17.02 24.51 44.06
7 0.56 15.54 19.91 42.88
8 0.61 14.71 20.22 36.92
9 0.88 7.57 9.64 21.51

10 0.93 6.03 7.36 18.96

MAE, mean absolute error; MAPE, mean absolute percentage
error.

FIG. 3. Scatter plot and coefficient of determination be-
tween Tur and the combination factor of X consisting of Rrs
at bands 1, 2, and 3 of Landsat 8 OLI. OLI, Operational
Land Imager.
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Table 4 provides model error comparisons derived dur-
ing the validation phase. Tables 3 and 4 show that the tenth
model outperformed the others both in establishment and
validation. Taking this into account, the optimal algorithm
that produced the highest determination coefficient is as
follows:

Tur¼ 4:01� 28:70Xþ 18:51X2

X¼Rrs 3ð Þ=Rrs 2ð ÞþRrs 3ð Þ=Rrs 1ð Þ,
(2)

where X is the combination factor of Rrs at band 1, band 2, and
band 3, obtained from the Landsat 8 OLI. The coefficient of
determination (R2) is 0.92 for the establishment phase and

0.93 for the validation phase (Fig. 3). An F-test showed that
both establishment and validation are significant below 0.01.

The measured and estimated turbidity data are distributed
along a 1:1 line (Fig. 4), indicating that the statistical model
can be used to estimate turbidity in the study area of the
Hanjiang River. In addition, the MAE, RMSE, and MAPE of
the validation data are 6.03 nephelometric turbidity units
(NTU), 7.36 NTU, and 18.96%, respectively.

Results

The most stable of Landsat 8-based turbidity retrieval
model from formulation set was applied to Landsat 8 OLI
images taken on April 26, June 13, and November 20, 2013,
and January 23, 2014, to retrieve the spatial distribution of
turbidity in the Hanjiang River (Fig. 5).

The distribution frequency and descriptive statistics of de-
rived turbidity from the four images were calculated (Table 5
and Fig. 6). The turbidity on April 26, 2013, ranged from 13.8
to 42.7 NTU with a mean of 35.6 NTU. On June 13, 2013,
turbidity ranged from 35.6 to 65.5 NTU with a mean of 53.2
NTU. On November 20, 2013, turbidity ranged from 12.8 to
29.9 NTU with a mean of 25.3 NTU. On January 23, 2014,
turbidity ranged from 45.1 to 150.6 NTU with a mean of 80.7
NTU. To analyze distribution of the results from different
stations, turbidity acquired from OLI imagery was compared
with in situ data (Table 1). Tables 3 and 4 and Figs. 3 and 4
show that the turbidity retrieved from the selected statistical
model closely matches in situ data for most of the study area.

Discussion

Spatiotemporal patterns of turbidity distribution

Tables 1 and 5 and Figs. 5 and 6 indicate a region of high
turbidity (about 80–150 NTU) on January 23, 2014, in the
middle and downstream regions of the study area near

FIG. 4. Estimated turbidity from statistical model (10th)
plotted against measured turbidity for the validation data set.

FIG. 5. Turbidity distribution estimated from first four Landsat 8 OLI images.
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Xiantao City. One cause of this turbidity is the intense dredging
activity observed at Hanjiang River during our data collection
campaigns, which resuspended sediments and increased tur-
bidity values in the dredging region and downstream of that
region. Another possible cause could be that the water level
was low and flow was very weak on January 23, 2014. Table 6
provides real-time hydrological data from the Xiantao Han-
jiang River Hydrological Observation station located on the
south bank of the river in Xiantao City. Since the water’s
environmental capacity in downstream Hanjiang would de-
crease with a reduction in water flow and a drop of the water
level (Wang et al., 2004; Xie et al., 2004; Li et al., 2007), the
river would be more sensitive to pollutants from sources (such
as chemical and medical facilities) in or around Xiantao City.
These could lead to high turbidity distributions in the region.
Unfortunately, no water environmental parameters (such as
chemical oxygen demand, dissolved oxygen, and total phos-
phorus) other than turbidity are available for that day.

Applicability of OLI for turbid water

The Hanjiang River plays an important role for local
economical and social development as well as ecological
conservation in Central China. However, like many rivers
around the world, it is facing the threat of water quality
degradation due to the impacts of global climate change and
regional and local human activities (Wang et al., 2013). In

particular, the Danjiangkou Reservoir, upstream of Hanjiang
River (Fig. 1), has been used as part of the SNWDP since
December 2014. Even before completion of the diversion
project, spring algal blooms have occurred downstream of the
Hanjiang River (Wang et al., 2004, 2007). To assess whether
water pollutants such as algal blooms have increased as hy-
drological conditions of the Hanjiang River have changed
since the beginning of SNWDP water transfer, we used the
retrieval model to investigate the turbidity distribution for
spring of 2016 (the exact date is March 1, 2016).

Figure 7 shows a region of much higher turbidity (above
300 NTU) on March 1, 2016, near Xiantao City. News media
(Changjiang Times, 2016) described an algal bloom in this
area during spring of 2016. The water quality monitoring
results from the Environmental Monitoring Center of Hubei
Province show that the pH of the river water was weakly
alkaline (8.8–9.13) and dissolved oxygen was supersaturated
(13.47–14.44 mg/L), which is in accordance with the physi-
cal and chemical characteristics of the early stage of an algal
bloom.

When water transfer by the SNWDP in the upstream area
of the Hanjiang River began at the end of 2014, the water
level decreased in mid- and downstream areas, resulting in a
water level of only 23.41 m and very low flow rate (533 m3/s)
on March 1, 2016, in Xiantao City. In combination with high
water temperatures, the physical conditions for an algal out-
break in Hanjiang River were met, causing high water turbidity
(Wang et al., 2004, 2013; Xie et al., 2004). This example
shows that Landsat 8 images can be used for water quality
monitoring of riverine systems.

In addition, long-term spatiotemporal information of water
quality parameters should be obtained by ground measure-
ments and remote sensing observations (such as by the
Landsat series) to better understand the physical and che-
mical characteristics of water bodies and analyze the driving
factors for increased turbidity, leading to better protection of
the Hanjiang River ecosystem.

Potential problems with statistical models

Normally, concurrence between satellite overpass times
and field sampling is important for developing remote
sensing-based turbidity retrieval models, especially for very
dynamic water bodies. However, in our study, this factor was
less important because there was a time delay of less than 3 h
between the satellite overpass and field sampling during each
field campaign, no rainfall or wind, and no significant change
of water level during that period.

One Landsat 8 OLI image pixel covers a 30 · 30 m square
or 15 · 15 m area, while its corresponding turbidity value is
generally derived from a water sample collected at a certain
location. Due to this scale gap between the image pixel and

Table 5. Description of Landsat 8 OLI-Derived

Turbidity (Nephelometric Turbidity Units)

in the Study Area

Image date

Turbidity
range
(NTU)

Mean
value

Standard
deviation

April 26, 2013 13.8–42.7 35.6 6.50
June 13, 2013 35.6–65.5 53.2 5.38
November 20, 2013 12.8–29.9 25.3 3.54
January 23, 2014 45.1–150.6 80.7 32.15

FIG. 6. Frequency distribution of turbidity in first four
images from April 2013 to January 2014 estimated from
Landsat 8 OLI images with the selected statistical model.

Table 6. Description of Flow and Water Level

on Sampling Days

Sampling date Water level Flow (m3/s)

April 26, 2013 24.19 633
June 13, 2013 25.62 858
November 20, 2013 24.07 656
January 23, 2014 23.42 455
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turbidity measurement, it is generally assumed that turbidity
values within a pixel are homogeneous when developing the
retrieval model. However, such an assumption is not always
valid for the study area because of dredging activities or
localized water pollution.

Since no well-performing atmospheric algorithm for in-
land waters has been developed for Landsat 8 OLI images
(Wu et al., 2015), a simple method was employed to calculate
the water-leaving reflectance of Landsat 8 OLI visible and
infrared bands in this study, which might affect model devel-
opment to some extent. Several methods have been applied to
atmospherically correct MODIS images for estimating the
water quality parameters of case II waters–atmospheric algo-
rithms (Xie et al., 2004; Li et al., 2007); however, no unified
atmospheric algorithm presently exists (Gordon, 1997). It
would be interesting to assess the performance of these at-
mospheric algorithms for Landsat 8 OLI images to improve
water quality retrieval in future studies. Regrettably, because
the in situ spectral reflection of water was not measured in our
field survey, and the Landsat Surface Reflectance–L8OLI/
TIRS product is not available from the USGS for the study
area, the validation of derived reflection could not be im-
plemented in this study.

The statistical models developed in this study are empirical
because of the absence of a strict theoretical foundation and
because of different optical properties of different water
bodies or even at different time periods (Wu et al., 2015),
which means that they cannot be applied directly to other
water bodies. Another problem is the gap between the two
clusters (<60 NTU and >100 NTU) of in situ data (Fig. 2).
This may cause overfitting during model calibration. Un-
fortunately, no additional field surveys were conducted after
February 2014 because the project had ended.

Expectations of Landsat 8 OLI

Landsat satellites have been widely used to estimate water
quality parameters of inland waters (Kenier and Yan, 1998;
Ko et al., 2015). The latest Landsat satellite, Landsat 8 with
OLI sensor, has the potential to extend more than 40 years of
existing water quality estimations from Landsat satellites
(Vasanthavigar et al., 2011; Hong et al., 2015). We expect
that more robust semianalytical or statistical models will be

developed for Landsat 8 images to build regional or universal
models for water quality estimations of inland waters.

Conclusions

Field surveys downstream of the Hanjiang River were
conducted to measure turbidity between April 2013 and
January 2014. The objectives of this study were to investigate
turbidity characteristics downstream of the Hanjiang River
and to evaluate whether Landsat 8 OLI data could be used to
monitor river water quality. The turbidity range downstream
of the Hanjiang River was retrieved from Landsat 8 OLI data
by employing atmospheric correction and formulating a re-
trieval model. Distribution trends in turbidity for the study
area are consistent with field investigation results.

Results from this study show the advantages of using
Landsat 8 OLI for inland riverine applications. High spatial
resolution (30 m) resolves small-scale turbidity features that
may otherwise go undetected, making the study of high
patchiness related to suspended sediments in river systems
viable.

Additional studies should be carried out to validate our
findings and to obtain more accurate estimates of the spatial
distribution of water quality parameters in the Hanjiang River
after commencement of the SNWDP.
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